

ARCGIS PROCEDURAL RUNTIME

WHITEPAPER

Abstract

ArcGIS CityEngine is based on the procedural runtime (PRT), which is the
underlying engine that supports also two GP tools in ArcGIS 10.X and
drives procedural symbology in ArcGIS Pro. The CityEngine SDK enables
you as a 3rd party developer to integrate the procedural runtime in your
own client applications (such as DCC or GIS applications) taking full
advantage of the procedural core without running CityEngine or ArcGIS.
CityEngine is then needed only to author the procedural modeling rules.
Moreover, using the CityEngine SDK, you can extend CityEngine with
additional import and export formats. This document gives an overview
of the procedural runtime architecture and capabilities.

ArcGIS Procedural Runtime 4/20/2023 – Esri R&D Center Zurich 1

Copyright © 2013-2023 Esri, Inc.

All rights reserved.

The information contained in this document is the exclusive property of Environmental Systems Research Institute, Inc. This work is protected

under United States copyright law and other international copyright treaties and conventions. No part of this work may be reproduced or

transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or

retrieval system, except as expressly permitted in writing by Environmental Systems Research Institute, Inc. All requests should be sent to

Attention: Contracts Manager, Environmental Systems Research Institute, Inc., 380 New York Street, Redlands, CA 92373-8100 USA.

The information contained in this document is subject to change without notice.

U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS

Any software, documentation, and/or data delivered hereunder is subject to the terms of the License Agreement. In no event shall the

Government acquire greater than RESTRICTED/LIMITED RIGHTS. At a minimum, use, duplication, or disclosure by the Government is subject to

restrictions as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or FAR §12.211/12.212

(Commercial Technical Data/Computer Software); and DFARS §252.227-7015 (NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer

Software), as applicable. Contractor/Manufacturer is Environmental Systems Research Institute, Inc., 380 New York Street, Redlands, CA 92373-

8100 USA. In the United States and in some countries, ARC/INFO, ArcCAD, ArcView, ESRI, PC ARC/INFO, and CityEngine are registered

trademarks; 3D Analyst, ADF, AML, ARC COGO, ARC GRID, ARC NETWORK, ARC News, ARC TIN, ARC/INFO, ARC/INFO LIBRARIAN, ARC/INFO—

Professional GIS, ARC/INFO—The World's GIS, ArcAtlas, ArcBrowser, ArcCAD, ArcCensus, ArcCity, ArcDoc, ARCEDIT, ArcExplorer, ArcExpress,

ARCPLOT, ArcPress, ArcScan, ArcScene, ArcSchool, ArcSdl, ARCSHELL, ArcStorm, ArcTools, ArcUSA, ArcUser, ArcView, ArcWorld, Atlas GIS,

AtlasWare, Avenue, BusinessMAP, DAK, DATABASE INTEGRATOR, DBI Kit, ESRI, ESRI—Team GIS, ESRI—The GIS People, FormEdit, Geographic

Design System, GIS by ESRI, GIS for Everyone, GISData Server, IMAGE INTEGRATOR, InsiteMAP, MapCafé, MapObjects, NetEngine, PC ARC/INFO,

PC ARCEDIT, PC ARCPLOT, PC ARCSHELL, PC DATA CONVERSION, PC NETWORK, PC OVERLAY, PC STARTER KIT, PC TABLES, SDE, SML, Spatial

Database Engine, StreetMap, TABLES, the ARC COGO logo, the ARC GRID logo, the ARC NETWORK logo, the ARC TIN logo, the ARC/INFO logo,

the ArcCAD logo, the ArcCAD WorkBench logo, the ArcData emblem, the ArcData logo, the ArcData Online logo, the ARCEDIT logo, the

ArcExplorer logo, the ArcExpress logo, the ARCPLOT logo, the ArcPress logo, the ArcPress for ArcView logo, the ArcScan logo, the ArcStorm logo,

the ArcTools logo, the ArcView 3D Analyst logo, the ArcView Data Publisher logo, the ArcView GIS logo, the ArcView Internet Map Server logo,

the ArcView Network Analyst logo, the ArcView Spatial Analyst logo, the ArcView StreetMap logo, the Atlas GIS logo, the Avenue logo, the

BusinessMAP logo, the BusinessMAP PRO logo, the Common Design Mark, the DAK logo, the ESRI corporate logo, the ESRI globe logo, the

MapCafé logo, the MapObjects logo, the MapObjects Internet Map Server logo, the NetEngine logo, the PC ARC/INFO logo, the SDE logo, the

SDE CAD Client logo, The World's Leading Desktop GIS, ViewMaker, Water Writes, and Your Personal Geographic Information System are

trademarks; and ArcData, ARCMAIL, ArcOpen, ArcQuest, ArcWatch, ArcWeb, Rent-a-Tech, www.esri.com, and @esri.com are service marks of

Environmental Systems Research Institute, Inc. The names of other companies and products herein are trademarks or registered trademarks of

their respective trademark owners.

ArcGIS Procedural Runtime 4/20/2023 – Esri R&D Center Zurich 2

Introduction
With the addition of CityEngine to Esri’s family of desktop applications, the need for a tighter integration

of the procedural 3D technology with Esri’s line of 2D and 3D offerings emerged. The first step with

CityEngine 2012 was extending the support of GIS data formats for seamless interoperability. With

CityEngine 2013, the procedural core technology was modularized and now all Esri desktop applications

use the same engine for procedural 3D model generation. Additionally, customers from the 3D content

creation and entertainment industry asked for procedural technology independent of CityEngine for

their applications and in-house pipelines which we wanted to answer with an independent procedural

engine. Figure 1 gives an overview of the software eco-system in which the procedural runtime lives.

Figure 1 - The procedural runtime eco-system

These are the main driving forces behind the development of the ArcGIS procedural runtime. The

runtime is a software module that essentially encapsulates the procedural core of CityEngine into a few

shared libraries that can be used independent of CityEngine by any client application running on

Windows, Linux, or Mac OS. In addition to that, the runtime has been redesigned to better fit large-scale

multi-core and server deployments. The goal of the CityEngine SDK is to offer a powerful yet convenient

toolkit for procedural modeling needs.

Overview and Architecture
Generally speaking, the procedural runtime transforms features (2D or 3D meshes) and attributes into

3D models using procedural rules. Figure 2 highlights this process.

ArcGIS Procedural Runtime 4/20/2023 – Esri R&D Center Zurich 3

Figure 2 - The procedural generation process. Features (2D or 3D meshes) together with attributes and rules are used to
procedurally create 3D models.

Figure 3 gives an overview of the runtime’s software architecture. A client application (e.g. CityEngine

[1]) invokes the runtime through the PRT API [2] whose key functionality is to trigger the procedural

generation of 3D geometry which is performed by Shape Processing Units (SPUs [4]). In addition to the

PRT API invocations, 3rd party software can hook into the generation process by extending the runtime

through decoders, encoders and adaptors using the PRTX interfaces [3]. External resource access (e.g.

for 3D models or textures) and caching is handled by the data backend [5]. The callback interface [6]

closes the loop and communicates the generated 3D models back to the client application.

Figure 3 - Procedural runtime overview

The two worlds: PRT and PRTX
The procedural runtime consists of two worlds: PRT and PRTX. PRT is the API for triggering the

generation of procedural 3D content. PRTX is the extension interface of the procedural runtime and is a

collection of classes and implementation guidelines that allow extending it by custom codecs (e.g. for 3D

or raster file formats) as well as for accessing non-file based data sources (e.g. an asset library in a

database).

ArcGIS Procedural Runtime 4/20/2023 – Esri R&D Center Zurich 4

PRT – Procedural Runtime Client API
PRT is a relatively concise API which allows you to submit generation jobs to the runtime and query the

runtime for its capabilities in terms of encoders, decoders, and rule files. The API minimizes the use of

C++ constructs for compiler and C-runtime compatibility. Compilers sharing the same Application Binary

Interface (ABI) should be able to compile and link against the provided libraries and headers without

special configuration.

PRTX – Procedural Runtime Extension Interface
The PRTX programming interface is a larger collection of classes and functions that allow fine grained

access to the data structures created during procedural 3D geometry generation. In contrast to the PRT

API, the PRTX programming interface uses all available C++14 features. PRTX extensions are assumed to

be provided in their own shared libraries and have to follow the same rules for compilation and linkage

as the procedural runtime itself.

The following table highlights a few common use cases and their PRT and PRTX implications:

Use case examples PRT PRTX

Procedural 3D model generation in custom
client application with the supplied codecs
and callbacks (e.g. command line tool)

- Invoke PRT API from client
application
- Use one of the supplied callback
implementations for results

Integrate procedural 3D model generation
with existing Digital Content Creation (DCC)
application

- Invoke PRT API from DCC
application
- Implement custom callback for
transferring 3D geometry data back
to DCC application

- Write encoder for in-memory 3D
geometry data suitable for custom
callback implementation (or custom
output format)

Create a language binding for PRT - Wrap PRT API calls for target
language
- Implement custom callback for
transferring 3D geometry data back
to the caller

Write encoder for in-memory 3D
geometry data suitable for custom
callback implementation (or custom
output format)

Extend CityEngine with custom export
functionality

 Write encoder for custom output
format

Extend CityEngine with custom asset
reader functionality

 Write decoder for custom input
format

Add custom asset repository access Use PRT API with URI scheme for
custom asset repository

Write adaptor for custom asset
repository URI scheme

Custom (persistent) cache implementation
/ caching policy

Implement the PRT cache protocol

Design Principles
The design principles outlined below are guiding the architecture as well as the API and interface design

of the procedural runtime. The goal is to ease the integration of in a broad range of application

scenarios such as 3rd party desktop application extensions (plugins), hosted 3D services, or

entertainment pipelines.

CGA Rules and Assets
CGA (Computer Generated Architecture) is a proprietary, domain specific procedural modelling

language which uses CGA rule files to define rules (shape transformations) by means of CGA operations.

CGA files are compiled by the CGA compiler into a binary representation called CGB (CGA-Binary) which

ArcGIS Procedural Runtime 4/20/2023 – Esri R&D Center Zurich 5

are consumed by the procedural runtime. The CGA compiler is built into the CityEngine desktop

application.

CGA defines operations (e.g. i() or texture()) that reference external assets such as 3D models (e.g. a

Collada file) or textures (e.g. a TIFF file) by symbolic names. Thus for most CGB files, supplementary

assets are required in order to generate the expected 3D result. In order to translate a symbolic name to

a resource access, the procedural runtime uses a data structure provided by the client application to

translate symbolic names to URIs used for resource access.

A rule package is an archive file with an rpk extension that encapsulates a CGB file and its

supplementary assets. Rule packages contain a CGB, 3D assets, and textures. Rule packages are usually

created with CityEngine but their format is documented and 3rd party applications can create their own

RPKs if required.

Modularity
Since the procedural runtime targets a broad range of use cases, it has a modular and extensible design

enabling fine-tuning for a specific environment. Currently the procedural runtime can be customized

with the following 3rd party implementations:

• Callback interface: Output handling is entirely delegated to the PRT callback interface.

• Logging: Clients can add their own log handlers to the runtime logging facility.

• Adaptors can register themselves for a specific URI scheme and are responsible for resolving an

URI. Several adaptors are supplied and 3rd party developers can provide their own

implementations.

• Codecs translate between an external representation (e.g. a 3D file) and an internal data

structure (e.g. a Geometry). There are two kinds of codec: decoders which read assets from

external representations (e.g. the JPGDecoder or the OBJDecoder) and encoders which

transform internal representations such as a geometry to an external representation (e.g. the

FBXEncoder). Several codecs for common raster and 3D formats are supplied and 3rd party

developers can provide their own implementations.

• Caching: Persistent caches or specific cache policies can be implemented through the PRT cache

protocol.

Memory Management
• All PRT objects which are created through the API inherit from a common base class and must

be disposed by calling a dedicated member function. This ensures that object are allocated and

freed by the same C-runtime and make the client implementation independent of the PRT C-

runtime version.

• PRTX utilizes shared pointers whenever possible. Therefore procedural runtime extensions

generally do not need to care about freeing memory and pointer ownership.

Data Types
• In order to minimize locks, most PRT objects are immutable.

• The procedural runtime is stateless. The client can freely destroy PRT objects after calls to the

API.

• The PRT API and PRTX interfaces use only double precision floating point numbers.

ArcGIS Procedural Runtime 4/20/2023 – Esri R&D Center Zurich 6

• Although the API is unit-less, the procedural runtime implicitly assumes that values and

coordinates are in meters and Cartesian where appropriate.

• PRT API and PRTX use wide strings to avoid character encoding ambiguities (essentially using

UTF-16 with the Basic Multilingual Plane) whenever possible.

• PRT objects can be converted to an XML representation which simplifies and homogenizes

debugging, logging, and serialization.

Multi-Threading
The procedural runtime is designed and implemented with today’s multicore processors in mind. It

supports coarse-grained parallelism through its thread-safe API. The implementation minimizes global

locks, and parallel invocations of the PRT API typically progress concurrently. The SPU implementation

may use fine-grained parallelism when appropriate.

Despite the procedural runtime’s multi-threaded implementation, PRT API clients as well as PRTX codecs

and adaptors can ignore concurrency most of the time because of the runtime life-cycle management

for these instances.

Error Handling
Because of the limited C++ usage for the PRT API, all PRT API calls return a status value to indicate

success or abnormal conditions and never throw exceptions. However, PRTX uses C++ exceptions

extensively and 3rd party code can throw exceptions if appropriate.

Internationalization
While great attention has been paid for supporting a wide range of localized environments (UTF-16, URI

percent encoding, use of XML) the procedural runtime itself is English only. Since most of the runtime

data has symbolic names anyway, mapping them to localized user interface strings should be straight

forward in a client application.

Conclusion
This document gives just a brief overview of the ArcGIS procedural runtime. Please check the SDK

documentation and examples for a detailed descriptions of classes and member functions as well as the

CGA help for more information on Computer Generated Architecture.

The goal of the CityEngine SDK is to offer 3rd party developers a powerful procedural modeling toolkit in

the most convenient way. Do not hesitate to contact Esri if you have specific needs, comments, or

feedback regarding the procedural runtime and we will evolve the product accordingly.

	Introduction
	Overview and Architecture
	The two worlds: PRT and PRTX
	PRT – Procedural Runtime Client API
	PRTX – Procedural Runtime Extension Interface

	Design Principles
	CGA Rules and Assets
	Modularity
	Memory Management
	Data Types
	Multi-Threading
	Error Handling
	Internationalization

	Conclusion

