

ARCGIS PROCEDURAL RUNTIME

ARCHITECTURE

Abstract

ArcGIS CityEngine is based on the procedural runtime (PRT), which is the
underlying engine that supports also two GP tools in ArcGIS 10.X and
drives procedural symbology in ArcGIS Pro. The CityEngine SDK enables
you as a 3rd party developer to integrate the procedural runtime in your
own client applications (such as DCC or GIS applications) taking full
advantage of the procedural core without running CityEngine or ArcGIS.
CityEngine is then needed only to author the procedural modeling rules.
Moreover, using the CityEngine SDK, you can extend CityEngine with
additional import and export formats. This document gives an overview
of the procedural runtime architecture, capabilities, its API, and usage.

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 1

Copyright © 2013-2023 Esri, Inc.

All rights reserved.

The information contained in this document is the exclusive property of Environmental Systems Research Institute, Inc. This work is protected

under United States copyright law and other international copyright treaties and conventions. No part of this work may be reproduced or

transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or

retrieval system, except as expressly permitted in writing by Environmental Systems Research Institute, Inc. All requests should be sent to

Attention: Contracts Manager, Environmental Systems Research Institute, Inc., 380 New York Street, Redlands, CA 92373-8100 USA.

The information contained in this document is subject to change without notice.

U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS

Any software, documentation, and/or data delivered hereunder is subject to the terms of the License Agreement. In no event shall the

Government acquire greater than RESTRICTED/LIMITED RIGHTS. At a minimum, use, duplication, or disclosure by the Government is subject to

restrictions as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or FAR §12.211/12.212

(Commercial Technical Data/Computer Software); and DFARS §252.227-7015 (NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer

Software), as applicable. Contractor/Manufacturer is Environmental Systems Research Institute, Inc., 380 New York Street, Redlands, CA 92373-

8100 USA. In the United States and in some countries, ARC/INFO, ArcCAD, ArcView, ESRI, PC ARC/INFO, and CityEngine are registered

trademarks; 3D Analyst, ADF, AML, ARC COGO, ARC GRID, ARC NETWORK, ARC News, ARC TIN, ARC/INFO, ARC/INFO LIBRARIAN, ARC/INFO—

Professional GIS, ARC/INFO—The World's GIS, ArcAtlas, ArcBrowser, ArcCAD, ArcCensus, ArcCity, ArcDoc, ARCEDIT, ArcExplorer, ArcExpress,

ARCPLOT, ArcPress, ArcScan, ArcScene, ArcSchool, ArcSdl, ARCSHELL, ArcStorm, ArcTools, ArcUSA, ArcUser, ArcView, ArcWorld, Atlas GIS,

AtlasWare, Avenue, BusinessMAP, DAK, DATABASE INTEGRATOR, DBI Kit, ESRI, ESRI—Team GIS, ESRI—The GIS People, FormEdit, Geographic

Design System, GIS by ESRI, GIS for Everyone, GISData Server, IMAGE INTEGRATOR, InsiteMAP, MapCafé, MapObjects, NetEngine, PC ARC/INFO,

PC ARCEDIT, PC ARCPLOT, PC ARCSHELL, PC DATA CONVERSION, PC NETWORK, PC OVERLAY, PC STARTER KIT, PC TABLES, SDE, SML, Spatial

Database Engine, StreetMap, TABLES, the ARC COGO logo, the ARC GRID logo, the ARC NETWORK logo, the ARC TIN logo, the ARC/INFO logo,

the ArcCAD logo, the ArcCAD WorkBench logo, the ArcData emblem, the ArcData logo, the ArcData Online logo, the ARCEDIT logo, the

ArcExplorer logo, the ArcExpress logo, the ARCPLOT logo, the ArcPress logo, the ArcPress for ArcView logo, the ArcScan logo, the ArcStorm logo,

the ArcTools logo, the ArcView 3D Analyst logo, the ArcView Data Publisher logo, the ArcView GIS logo, the ArcView Internet Map Server logo,

the ArcView Network Analyst logo, the ArcView Spatial Analyst logo, the ArcView StreetMap logo, the Atlas GIS logo, the Avenue logo, the

BusinessMAP logo, the BusinessMAP PRO logo, the Common Design Mark, the DAK logo, the ESRI corporate logo, the ESRI globe logo, the

MapCafé logo, the MapObjects logo, the MapObjects Internet Map Server logo, the NetEngine logo, the PC ARC/INFO logo, the SDE logo, the

SDE CAD Client logo, The World's Leading Desktop GIS, ViewMaker, Water Writes, and Your Personal Geographic Information System are

trademarks; and ArcData, ARCMAIL, ArcOpen, ArcQuest, ArcWatch, ArcWeb, Rent-a-Tech, www.esri.com, and @esri.com are service marks of

Environmental Systems Research Institute, Inc. The names of other companies and products herein are trademarks or registered trademarks of

their respective trademark owners.

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 2

Contents
Introduction .. 4

Concepts ... 5

The two worlds: PRT and PRTX ... 5

PRT – Procedural Runtime Client API .. 6

PRTX – Procedural Runtime Extension Interface .. 6

Shape... 6

Shape Tree .. 7

CGB Files.. 8

Shape Processing Unit ... 9

Resolve Map .. 9

Rule packages .. 10

Adaptors .. 10

Codecs ... 11

Client Callbacks ... 12

Client Side Caching .. 13

Logging .. 13

Design Principles ... 15

Modularity .. 15

Memory Management .. 15

Data Types ... 15

Multi-Threading .. 16

Error Handling ... 16

Internationalization... 16

Using the Procedural Runtime API .. 17

Initialization... 17

Resolve Map, Callbacks, and Cache .. 17

Rule File Information .. 18

Initial Shape... 19

Generating 3D models .. 20

Writing Procedural Runtime Extensions ... 23

Extension Life Cycle ... 23

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 3

Factories .. 23

Adaptors .. 24

Decoder ... 24

Encoder ... 25

Encoder Life Cycle ... 25

Encoder Utilities .. 26

Conclusion ... 28

List of Figures .. 29

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 4

Introduction
With the addition of CityEngine to Esri’s family of desktop applications, the need for a tighter integration

of the procedural 3D technology with Esri’s line of 2D and 3D offerings emerged. The first step with

CityEngine 2012 was extending the support of GIS data formats for seamless interoperability. With

CityEngine 2013, the procedural core technology was modularized and now all Esri desktop applications

use the same engine for procedural 3D model generation. Additionally, customers from the 3D content

creation and entertainment industry asked for procedural technology independent of CityEngine for

their applications and in-house pipelines which we wanted to answer with an independent procedural

engine.

These are the main driving forces behind the development of the ArcGIS procedural runtime. The

runtime is a software module that essentially encapsulates the procedural core of CityEngine into a few

shared libraries that can be used independent of CityEngine by any client application running on

Windows or Linux. In addition to that, the runtime has been redesigned to better fit large-scale multi-

core and server deployments. The goal of the CityEngine SDK is to offer you as a 3rd party developer a

powerful yet convenient toolkit for your procedural modeling needs.

This document outlines the architecture, concepts, and design principles of the procedural runtime.

Please refer to the API documentation for a more detailed discussion of the individual classes and

functions.

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 5

Concepts
This section introduces the basic concepts of the procedural runtime. Prior knowledge of CGA

(Computer Generated Architecture – a domain specific, proprietary procedural modelling language) and

CityEngine helps understanding this section as an example use case of the procedural runtime.

Figure 1 gives an overview of the components involved. A client application (e.g. CityEngine [1]) invokes

the runtime through the PRT API [2] whose key functionality is to trigger the procedural generation of

3D geometry which is performed by Shape Processing Units (SPUs [4]). In addition to the PRT API

invocations, you as a 3rd party developer can hook into the generation process by extending the runtime

through decoders, encoders and adaptors using the PRTX interfaces [3]. External resource access (e.g.

for 3D models or textures) and caching is handled by the data backend [5]. The callback interface [6]

closes the loop and communicates the generated 3D models back to the client application.

Figure 1 - Procedural runtime overview

The two worlds: PRT and PRTX
From a 3rd party developer point of view the procedural runtime consists of two worlds: PRT and PRTX.

PRT is the API that you will invoke to trigger a procedural generation of 3D content. In order to do that,

you configure PRT for your generation task and supply the necessary data, encoders, and rules to the

runtime which in turn will produce the requested output.

PRTX is the extension interface of the procedural runtime (the X stands for eXtension). PRTX is a

collection of classes and implementation guidelines that allow you to extend the runtime. Currently it

can be extended by custom encoders and decoders (e.g. for 3D or raster file formats) as well as for

accessing non-file based data sources (e.g. an asset library in a database). Codecs are not limited to file

formats. For example, CityEngine uses an encoder that creates OpenGL data structures as part of the

generation process.

Depending on your use case, you will work with both PRT and PRTX or only one of each. The following

table highlights a few common use cases and their PRT and PRTX implications:

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 6

Use case examples PRT PRTX

Procedural 3D model generation in custom
client application with the supplied codecs
and callbacks (e.g. command line tool)

- Invoke PRT API from client
application
- Use one of the supplied callback
implementations for results

Integrate procedural 3D model generation
with existing Digital Content Creation (DCC)
application

- Invoke PRT API from DCC
application
- Implement custom callback for
transferring 3D geometry data back
to DCC application

- Write encoder for in-memory 3D
geometry data suitable for custom
callback implementation (or custom
output format)

Create a language binding for PRT - Wrap PRT API calls for target
language
- Implement custom callback for
transferring 3D geometry data back
to the caller

Write encoder for in-memory 3D
geometry data suitable for custom
callback implementation (or custom
output format)

Extend CityEngine with custom export
functionality

 Write encoder for custom output
format

Extend CityEngine with custom asset
reader functionality

 Write decoder for custom input
format

Add custom asset repository access Use PRT API with URI scheme for
custom asset repository

Write adaptor for custom asset
repository URI scheme

Custom (persistent) cache implementation
/ caching policy

Implement the PRT cache protocol

PRT – Procedural Runtime Client API
PRT is a relatively concise API which allows you to submit generation jobs to the runtime and query the

runtime for its capabilities in terms of encoders, decoders, and rule files. The API is organized in the prt

namespace and minimizes the use of C++ constructs. Memory allocation and de-allocation is hidden

behind a “compiler firewall” so the C-runtime library (CRT) of the client can be chosen freely. In turn, the

API is free from STL and many C++ features (e.g. exceptions) in order to reduce compiler dependency.

Compilers sharing the same Application Binary Interface (ABI) should be able to compile and link against

the provided libraries and headers without special configuration. This ensures that a client application

does not need to change its compiler and linker setting in order to access the PRT API. In consequence,

the API is rather C-stylish and may need some interface glue in an advanced C++ client application. Esri

provides headers and libraries for all supported platforms.

PRTX – Procedural Runtime Extension Interface
The PRTX programming interface is a larger collection of classes and functions that allow fine grained

access to the data structures created during procedural 3D geometry generation (most notably the

shape tree – see “Shape Tree” on page 7).

In contrast to the PRT API, the PRTX programming interface in the prtx namespace uses all available

C++14 features (including exceptions which may occur at any point during execution) as well as a

selected subset of STL classes. PRTX extensions are assumed to be provided in their own shared libraries

and have to follow the same rules for compilation and linkage as the procedural runtime itself. Please

refer to the individual platform technical notes for the specific compiler and linker settings.

Shape
Shape is one of the most fundamental data structures used throughout the procedural runtime. The

CGA shape grammar is a language to define a set of configurations of shapes which are constructed by

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 7

applying CGA operations to shapes. Shapes are basically a labeled container for attributes and

parameters. The starting shape for a generation process is called the initial shape. The various CGA

operations modify shape attributes and/or create new shapes. A shape consists of:

• Symbol: The name or label of the shape. The symbol corresponds to the rule that will generate

successor shapes. Note that multiple shapes with the same symbol may exist during a generation.

• Parameters: The CGA shape grammar is a parametric grammar and each shape can have a

parameter list associated with it.

• Attributes: The attributes contain the spatial description (including the geometry) of the shape as

well as key-value pairs. Attributes are accessible in the encoder and are used to create the resulting

output geometry and materials. A shape has the following attributes:

o Pivot: The pivot describes the shape’s coordinate system and is defined by a position vector

P (origin) and an orientation vector O (axis). The orientation vector is encoded as ordered

rotation in degrees around x, y and z axis. The pivot is given in world coordinates.

o Scope: The scope represents the oriented bounding box for the shape in space relative to

the pivot and is defined by three vectors: the translation vector T, the rotation vector R

(similar encoded as the orientation vector above), and the size vector S.

o Geometry: The geometry attribute contains the 3D description of the shape’s appearance

(relative to the scope). The geometry is encoded as a polygonal mesh and may contain

holes.

o Shader and material attributes: These attributes further specify the appearance of the

shape.

o Generic attributes: These named attributes are defined in the CGA file and are typically

user-settable in a client application (e.g. using the Inspector in CityEngine).

Figure 2 - Illustration of a CGA shape. Its parent coordinate system is defined by the pivot. Relative to the pivot, the scope
defines a bounding box. Inside the scope, the geometry of the shape is contained. Note that CGA operates in right-hand Y-up
coordinate system.

Shape Tree
The shape tree is the result of a generation and can be compared to a traditional scene graph with its

transformational hierarchy. An encoder accesses the shape tree through an iterator that allows shape-

tree traversal and accessing a shape and its attributes. The shape tree represents the generation history

of the applied rules and contains in turn additional structural information. However, in most cases the

structure itself is of no interest and only the geometries of the leaf nodes are combined into a 3D model

by an encoder.

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 8

The main difference between a shape tree and the traditional scene graph is that each node in the

shape tree contains geometry. Usually only the combined geometry of the leaf nodes are required for

the final 3D model. But for some use cases or debugging purposes also intermediate shape geometries

can be of interest. Figure 3 shows a part of a shape tree with leaf shapes as rectangular boxes and

intermediate nodes as arrow boxes.

Because of its generative nature, it is very common and easy to repeat geometry with CGA operations.

The procedural runtime detects and minimizes internal geometry duplications which enables efficient

encoding for formats that support for example instancing.

Figure 3 - A shape tree and a list of shape attributes.

CGB Files
CGA rule files are text files which define rules (shape transformations) by means of operations and are

written according to the CGA language specification. CGA files are compiled by the CGA compiler into a

binary representation called CGB (CGA-Binary). The CGA compiler is built-into the CityEngine desktop

application. CGB is the only rule file format that can be consumed by the procedural runtime.

In order to avoid the introduction of yet another platform-independent object file format, a CGB file

follows the Java class file specification. Even though CGB files are valid Java class files, a JVM is not

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 9

required for execution. The runtime provides its own VM implementation in the form of the Shape

Processing Unit (SPU) optimized for procedural 3D geometry generation.

The PRT API allows a client application to introspect a CGB file (prt::getRuleFileInfo()) and extract

information about rules and attributes. CGA annotations such as @Range() or @StartRule are directly

accessible from the rule file info and can be used to dynamically configure e.g. a user interface for initial

shape editing or to configure initial shape attributes automatically.

Shape Processing Unit
A CGB file is interpreted by one or multiple SPUs which implement the subset of the JVM specification

required for the execution of procedural rules. A SPU executes a rule by applying operations to a given

shape which will in turn create successors shapes and/or modify shape attributes. These successor

shapes are added to a set of active shapes from which a pool of SPUs consumes shapes and again

applies rules. This process continues until the set of active shapes only contains leaf shapes. Figure 4

illustrates this process during which the successor-predecessor shape hierarchy naturally forms the

shape tree.

Figure 4 - A SPU removes a shape from the set of active shapes, creates successor shapes according to the shape rule and adds
them to the set of active shapes.

Resolve Map
CGA defines operations (e.g. i() or texture()) that reference external assets such as 3D models (e.g. a

Collada file) or textures (e.g. a TIFF file). These operations are used for setting the geometry and

material attributes of a shape. Thus for most CGB files, supplementary assets are required in order to

generate the expected 3D result. Asset references in CGA are symbolic names because they do not

directly refer to a concrete resource but just act as a distinctive name. In order to translate a symbolic

name to a resource access, the procedural runtime requires a supporting data structure that maps from

symbolic names to URIs. This data structure is called the resolve map which contains symbolic names as

keys and URIs as values. The client creates this map either programmatically using the

prt::ResolveMapBuilder or extracts it from a rule package (see section “Rule packages”) by invoking

prt::createResolveMap() and passes it to the runtime together with the initial shapes. The data

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 10

backend uses this map during the execution of operations that reference external assets for resolving

the symbolic name to an actual URI. With the help of adaptors and decoders, the resource content is

then consumed.

Rule packages
As mentioned above, most CGB files require additional assets in order to generate the expected 3D

result. A rule package is an archive file with a rpk extension that encapsulates a CGB file and its

supplementary assets. Rule packages are 7zip (www.7zip.org) archives and contain a CGB, 3D assets, and

textures. Furthermore, the optional .resolvemap.xml entry in the root of the archive defines the

mapping between symbolic CGA names and archive entries and is used by the procedural runtime to

create a resolve map for a given RPK. Figure 5 shows the content of a rule package with the

.resolvemap.xml at the top, a few assets and the CGB file at the bottom.

Figure 5 - The content of a rule package.

Rule packages are usually created with CityEngine. Rule packages written by CityEngine contain a single

CGB file which has a single rule annotated with @StartRule. This is the required RPK format for the

ArcGIS 10.2 GP tools.

Adaptors
Adaptors are one of the two extension points of the procedural runtime. Adaptors can register

themselves for a specific URI scheme and are responsible for resolving an URI and returning a stream

that can then be processed by the decoders. In order to access a resource, the data backend uses the

resolve map to translate a symbolic name into an URI. The URI’s scheme is then used to find an adaptor

that is able to handle the URI. The adaptor handles an URI by constructing a stream that can be passed

on to decoders which in turn read from that stream and create in-memory PRTX data structures (e.g.

prtx::Geometry). Decoders are searched with the file extension extracted from the URI. Application

specific URI schemes can be registered for special resource lookup and decoder combinations. ArcGIS

for instance uses the memory URI scheme (see below) to give direct memory access to decoders running

in the same address space. Currently the following adaptors are supplied:

http://www.7zip.org/

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 11

• The file system adaptor handles the file URI scheme and returns a stream to the file content

denoted by the URI. See http://tools.ietf.org/html/rfc1738 for a discussion of file URIs.

• The zip file adaptor handles the zip URI scheme and returns a stream of the zip file entry

denoted by the URI. The zip URI scheme follows the http://www.iana.org/assignments/uri-

schemes/prov/jar syntax.

• The 7zip adaptor handles the rpk URI scheme and returns a stream of the rule package entry

denoted by the URI. The rpk URI scheme follows the http://www.iana.org/assignments/uri-

schemes/prov/jar syntax.

• The memory adaptor handles the memory URI scheme and returns a memory block denoted by

the URI as a stream. The scheme syntax is as follows: memory://<address>/<size>.<ext>

whereas <address> is a hexadecimal number (without prefix) denoting a 64-bit address in the

address space of the current process, <size> is the number of bytes referenced by this URI

starting from <address>, and <ext> is the file extension used for decoder lookup.

As a 3rd party developer you can extend the procedural runtime with your own adaptors to handle

specific schemes such as database access or a proprietary asset repository on a network server.

Figure 6 - Procedural runtime resource access. A symbolic name ("sphere.obj") is translated to an URI with the help of the
resolve map. The URI scheme is then used to find adaptors which create a stream for further processing by decoders.

Codecs
Codecs are the second extension option of the procedural runtime for 3rd party developers besides the

adaptors. Codecs translate between an external representation (e.g. a 3D file) and an internal data

structure (e.g. a prtx::Geometry) for a given content type. There are two kinds of codec: decoders

which read assets from external representations (e.g. the JPGDecoder or the OBJDecoder) and encoders

which transform internal representations such as the shape tree to an external representation (e.g. the

FBXEncoder). Encoders are used to export procedural 3D models from CityEngine. Codecs can also

convert between different in-memory representations, bypassing any serialization / deserialization

which may be more time efficient e.g. in a game engine or a DCC application. The following content

types are currently defined for codecs:

http://tools.ietf.org/html/rfc1738
http://www.iana.org/assignments/uri-schemes/prov/jar
http://www.iana.org/assignments/uri-schemes/prov/jar
http://www.iana.org/assignments/uri-schemes/prov/jar
http://www.iana.org/assignments/uri-schemes/prov/jar

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 12

• CT_GEOMETRY: A geometry codec operates on prtx::Geometry objects. Currently Multipatch,

Collada, OBJ, FBX, glTF, DWG, IFC and USD decoders are supplied as well as Multipatch, Collada,

OBJ, FBX, VOB, glTF, DWG, IFC, Alembic, SLPK, Datasmith and USD encoders.

• CT_MATERIAL: A material codec operates on prtx::Material objects. Currently decoders and

encoders for both the MTL and .cgamat format are supplied.

• CT_TEXTURE: A texture codec operates on prtx::Texture objects. The texture codecs are based

on GDAL (www.gdal.org) and decoders are supplied for all GDAL raster formats. In addition to

that, PNG and JPEG encoders are supplied also based on GDAL.

• CT_SHADER: Shader definition. Currently only the built-in CityEngine shader definition is allowed

and no custom implementation is possible.

• CT_CGB: There is a built-in decoder for CGB files which have the same format as Java class files.

• CT_CGAERROR: There is a built-in encoder for CGA runtime error messages which forwards to the

callback interface cgaError() member function.

• CT_CGAPRINT: There is a built-in encoder for the CGA print() operation and function which

forwards to the callback interface cgaPrint() member function.

• CT_CGAREPORT: There is a built-in encoder for the CGA report() operation which forwards to

the callback interface cgaReportBool(), cgaReportFloat(), and cgaReportString() member

functions.

• CT_ATTRIBUTE: There is a built-in encoder for attribute evaluation which forwards to the

callback interface attrBool(), attrFloat(), and attrString() member functions.

• CT_SHAPETREE: CityEngine uses a dedicated encoder for encoding the shape tree structure.

Shape trees can be cached for advanced use cases. See the encoder documentation for more

details.

• CT_STRING: Generic string, used for text files (see the CGA readTextFile() function).

• CT_TABLE: Basic table, see CGA readStringTable() and readFloatTable() functions.

Client Callbacks
The main focus of the procedural runtime is shape processing. All functionality not related to this is

either handled by subsystems such as adaptors and codecs or delegated to client callbacks. The client

callback plays a central role in the communication between the generation process and the client

application. The following functionality must be provided by the client callback:

• The client callback consumes encoder output. It is the responsibility of the client callback to

write data received from an encoder to a file or other data sink and ensure consistency and

locking. Data received from the runtime only remains valid during the execution of the specific

callback function. If data has to be preserved for later use, the callback must copy the data.

• The client callbacks handles CGA features that directly produce output such as print(),

report(), attribute evaluation, and error messages.

• The client callbacks translate between the world coordinate system used internally during the

generation and various external representations such as WGS84.

• The client callback handles progress reporting and controls continuation of the generation

process. For example user cancellation of the generation process can be implemented by the

client application through the progress and continuation callback.

http://www.gdal.org/

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 13

The following two callback implementations are currently provided and may be extended if needed by a

specific client application:

• The prt::FileOutputCallbacks implementation redirects output to the file system.

• The prt::MemoryOutputCallbacks implementation redirects output to in-memory blocks.

Client-Side Caching
Although the procedural runtime is stateless, state can be preserved between multiple calls on the client

side if desired. This can speedup resource access considerably if e.g. geometry assets do not have to be

decoded over and over again. Because no single cache policy can fit all client application needs, a client

application can provide its own cache implementation. For example, CityEngine provides a cache

implementation that optimizes resource usage across the whole application among multiple

subsystems.

The data backend, which resolves an URI (e.g. file:/P:/lib/assets/sphere.obj) to a content object

(e.g. prtx::Geometry), uses the cache interface to access data associated with an URI. There are two

main types of cache entries:

• Persistent data blocks: these are typed, serializable blocks of memory that may be persisted by

the application. This is typically raw, decoded pixel-data or texture meta-data.

• Transient: these are typed, non-serializable, internal objects (e.g. prtx::Geometry, or

prtx::Texture). Some transient resources are an aggregation of persistent data blocks. This

allows for redundancy detection at the persistent data block level and prefetching of data blocks

into the cache from a persistent source. CityEngine for examples stores persistent cache blocks

in the “.prtcache” directory in the platform’s temporary folder.

Please see the cache API documentation and examples for further details regarding the cache protocol.

The following cache implementations are currently provided by the procedural runtime and can be

created by calling prt::CacheObject::create():

CACHE_TYPE_DEFAULT: The default implementation that uses a simple in-memory cache which simply

grows if not flushed.

CACHE_TYPE_NONREDUNDANT: The non-redundant implementation uses an in-memory cache which simply

grows if not flushed but detects and unifies duplicate persistent blocks, effectively avoiding data

redundancy in the cache.

Logging
The procedural runtime provides an extensible logging interface which is usually configured before the

initialization of the runtime. The following log levels are defined:

• LOG_TRACE: Internal call tracing. This log level is disabled in release builds of the runtime.

• LOG_DEBUG: Verbose debug information.

• LOG_INFO: Informational messages such as configuration information during initialization.

• LOG_WARNING: Warning messages issued at a condition that did not abort an ongoing execution.

• LOG_ERROR: Error messages issued at a condition that altered/aborted the ongoing execution.

• LOG_FATAL: Fatal errors that leave the procedural runtime in an inconsistent /non-operational

state.

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 14

Clients can issue log messages by invoking prt::log() with the appropriate log level and message

which will be processed by the logging facility the same way as procedural runtime internal messages.

Log messages are silently discarded by default and have to be explicitly intercepted by one or more log

handlers in order to be processed. The following log handlers are provided:

• prt::ConsoleLogHandler: Writes log messages to stdout.

• prt::FileLogHandler: Write log messages to a text file.

Client applications can implement their own subclasses of prt::LogHandler for their specific logging

needs. CityEngine for example has a log handler that writes log messages to CityEngine’s log window.

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 15

Design Principles
The procedural runtime is based on a couple of design principles that are also reflected in the API and

the architecture. The following sub sections outline these principles and implications.

Modularity
Since the procedural runtime targets a broad range of use cases, it has a modular design enabling fine-

tuning for a specific environment. Currently the procedural runtime can be customized with the

following 3rd party implementations:

• Callback interface: Output handling is entirely delegated to the PRT callback interface.

• Logging: Clients can add their own log handlers to the runtime logging facility.

• Encoders: Writer for custom file formats or in-memory data structures can be implemented by

writing PRTX encoders.

• Decoders: Reader for custom file format can be implemented by writing PRTX decoders.

• Adaptors: Custom resource access can be implemented by writing PRTX adaptors.

• Resolve Map Provider: Lists embedded secondary resources used by a PRTX decoder.

• Caching: Persistent caches or specific cache policies can be implemented through the PRT cache

protocol.

Memory Management
• All PRT objects which are created through the API inherit from prt::Object and must be disposed

by calling the destroy() member function. This ensures that object are allocated and freed by the

same C-runtime and make the client implementation independent of the PRT C-runtime version.

It is the responsibility of the client to destroy objects that it has created.

• PRTX utilizes shared pointers whenever possible. Therefore procedural runtime extensions

generally do not need to care about freeing memory and pointer ownership.

Data Types
• In order to minimize locks, most PRT objects are immutable. Usually builders are used to create

PRT objects (e.g. prt::InitialShapeBuilder). Builders are not thread safe and it is the

responsibility of the client that a particular builder instance is not used by multiple threads.

• The procedural runtime is stateless. The client can freely destroy PRT objects after calls to the

API.

• Double precision floating point numbers: the PRT API and PRTX interfaces use only double

precision floating point numbers.

• Although the API is unit-less, the procedural runtime implicitly assumes that values and

coordinates are in meters and Cartesian where appropriate. It is the client responsibility to

convert values and project coordinates if it is using a non-metric or non-Cartesian systems.

• Wide strings: the PRT API and PRTX use wchar_t* and std::wstring respectively to avoid

character encoding ambiguities (essentially using UTF-16 with the Basic Multilingual Plane)

whenever possible. In cases where 8-bit character are required (e.g. prt::Object.toXML()),

UTF-8 is the standard encoding. The only exception are subclasses of

prt::SimpleOutputCallbacks which must be able to encode wide strings with the current

platform encoding (NATIVE), UTF-8 (UTF8) and UTF-16 (UTF16).

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 16

• PRT objects can be converted to an XML representation with prt::Object.toXML() which

simplifies and homogenizes debugging, logging, and serialization.

Multi-Threading
The procedural runtime is designed and implemented with today’s multicore processors in mind. It

supports coarse-grained parallelism through its thread-safe API. The implementation minimizes global

locks, and parallel invocations of the PRT API typically progress concurrently. The SPU implementation

may use fine-grained parallelism when appropriate.

Despite the procedural runtime’s multi-threaded implementation, PRT API clients as well as PRTX codecs

and adaptors can ignore concurrency most of the time:

• PRT API calls can be issued from any thread, just use your application’s threading model.

• PRTX codecs are created and used on a single thread. No synchronization is necessary by the

codec implementation unless global data must be shared between codecs.

• PRTX adaptors are created and used on a single thread. No synchronization is necessary by the

adaptor implementation unless global data must be shared between adaptors.

• The procedural runtime accesses resources in a read-only manner through adaptors. All low-

level write operations (e.g. exporting to a specific 3D file format) are delegated to the client

callbacks. This avoids implementation of file locks or complex transaction behaviors as part of

the procedural runtime.

Nevertheless, some calls are made concurrently by the procedural runtime and synchronization, locking,

or transactions have to be implemented by the client for correctness.

• Callback implementations may be called from multiple threads in parallel. All callback member

functions must be synchronized.

• Cache implementations may be called from multiple threads in parallel. All cache member

functions must be synchronized.

• Log implementations may be called from multiple threads in parallel. All log member functions

must be synchronized.

Error Handling
Because of the limited C++ usage for the PRT API, all PRT API calls return a status value

(prt::STATUS_xxx) to indicate success or abnormal conditions and never throw exceptions. However,

PRTX uses C++ exceptions extensively and PRTX 3rd party code can throw exceptions if appropriate. Error

and warning conditions are usually also reported by corresponding messages through the logging

interface. PRT objects implement a toXML() member function which allows easy printing and parsing of

PRT data structures.

Internationalization
While great attention has been paid for supporting a wide range of localized environments (UTF-16, URI

percent encoding, use of XML) the procedural runtime itself is English only. Since most of the runtime

data has symbolic names anyway, mapping them to localized user interface strings should be straight

forward in a client application. Only log messages are hard-coded in English and cannot be localized in

the current version.

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 17

Using the Procedural Runtime API
This section highlights important parts of the PRT API which you will likely use from a client application.

The PRT API lets you generate 3D models with the supplied adaptors and codecs. For example the

ArcGIS Desktop geoprocessing tools use the memory adaptor, the Multipatch codec as well as the

memory output callbacks as-is to implement in-memory 3D model generation using simply the PRT API.

The code samples below do not form a working example so please check the CityEngine SDK for

complete, ready-to-customize code. All error handling as well as memory management has been

omitted to keep the code samples small. In an actual application scenario it is highly recommended to

check the status values, and prt::Objects that are created must be destroyed to avoid memory leaks.

Initialization and Shutdown
Before using any functionality of the procedural runtime it has to be initialized. During initialization, the

runtime allocates internal data structures and dynamically loads codecs and adaptors from shared

libraries. The only exception is the logging framework which accepts log handlers before initializations.

Most client application register a log handler as a first step so they can also intercept runtime log

messages during initialization. As stated above, error and memory handling has to be done on the client

side. Calling destroy() is particularly important for the library handle returned by the prt::init() call.

A typical initialization (and shutdown) sequence may look as follows:

Setup console logging:

prt::ConsoleLogHandler* logHandler

= prt::ConsoleLogHandler::create(prt::LogHandler::ALL, prt::LogHandler::ALL_COUNT);

prt::addLogHandler(logHandler);

Prepare the procedural runtime extension library path (codecs and adaptors):

const wchar_t* extensionPath = L”C:\\dev\\ce_sdk\\lib”; // ce_sdk = CityEngine SDK

Initialize the procedural runtime:

const prt::Object* libraryHandle = prt::init(&extensionPath, 1, prt::LOG_INFO);

Release the library handle at application termination:

void shutdown() {

 libraryHandle->destroy();

 prt::removeLogHandler(logHandler);

 logHandler->destroy();

}

...

atexit(shutdown);

...

Resolve Map, Callbacks, and Cache
The procedural runtime centers around procedural 3D model generation and any auxiliary functionality

is delegated to extensions or the client. Thus the client has to provide data and implementations that fit

its needs. Several default implementations are provided for 3rd party developers as part of the SDK and

can be directly created by the client or extended as sub-classes.

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 18

• The resolve map allows the data backend to translate symbolic names in CGA files to URIs for

locating resources and is usually created from a RPK URI.

• The callbacks is the key interface through which generation results are communicated back to

the client. Usually encoders send data to the client through write() calls. But application may

use a dedicated pair of callbacks and encoder to optimize data transfer (e.g. by passing memory

references instead of serialized geometry data) between the encoder and the client.

• The cache allows a client to carry data from one invocation of prt::generate() to the next

which can speed-up the generation process considerably because assets are stored in an

optimized internal format in the cache for reuse.

Create the resolve map for an RPK:

const prt::ResolveMap* resolveMap = prt::createResolveMap(L"rpk:file:/P:/lib/sample.rpk");

Create callbacks which writes to the file system:

prt::FileOutputCallbacks* callbacks = prt::FileOutputCallbacks::create(L"P:\\models");

Create a default cache:

prt::Cache* cache = prt::CacheObject::create(prt::CacheObject::CACHE_TYPE_DEFAULT);

Rule File Information
The procedural runtime defines several concepts and formats which a client must be able to create and

query. Although the runtime uses well documented standard formats (such as 7zip archives or Java class

files) where possible, a client should not need to re-implement parsing of these formats. Therefore a

few PRT utility functions allow convenient access to that information.

A resolve map is a simple key-value map which can be iterated and queried by the client. Because a

resolve map can be created from an RPK URI, this enables easy introspection of the RPK structure and

content.

Similarly, information about a rule file can be obtained for a given CGB URI. The prt::RuleFileInfo

exposes the internal structure and data related to the source CGA file such as attributes, rules, and

annotations. The information in the rule file info is sufficient for a client to dynamically configure the

attributes of an initial shape. For example the inspector of CityEngine builds its user interface entirely

from the rule file info (see Figure 7).

Find CGB file in resolve map:

const wchar_t* cgbKey = resolveMap->findCGBKey();

const wchar_t* cgbURI = resolveMap->getString(cgbKey);

Find start rule in CGB file by iterating through the rule file info:

const prt::RuleFileInfo::Entry* startRule = nullptr;

const prt::RuleFileInfo* const info = prt::createRuleFileInfo(cgbURI);

for(size_t ri = 0; ri < info->getNumRules(); ri++) {

 const prt::RuleFileInfo::Entry* const rule = info->getRule(ri);

 if(rule->getNumParameters() > 0) continue;

 for(size_t ai = 0; ai < rule->getNumAnnotations(); ai++) {

 if(wcscmp(rule->getAnnotation(ai)->getName(), L"@StartRule") == 0) {

 startRule = rule;

 break;

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 19

 }

 }

 if(startRule != nullptr) break;

}

Figure 7- Inspector user interface dynamically created by CityEngine based on rule file info.

Initial Shape
The initial shape is the starting point for every generation process. Several attributes are mandatory and

must be set before a generation can successfully take place. These are the URI of the CGB file, the name

of the start rule (which becomes the shape symbol), the random seed, a (probably empty) map of CGA

attributes, and a resolve map for resource lookup. In addition to that, a geometry has to be set which

becomes the geometry attribute of the initial shape. The geometry is specified in a Y-up right-handed

coordinate system and the unit is assumed to be meters (see “Shape” on page 6) by invoking:

prt::InitialShapeBuilder::setGeometry(double const* vertexCoords,

size_t vcCount, uint32_t const* indices, size_t indicesCount, uint32_t const* faceCounts, size_t

faceCountsCount, const uint32_t* holes, size_t holesCount);

• vertexCoords : The vertex coordinates as (x,y,z) tuples: { x0, y0, z0, x1, y1, z1, ... }.

• vcCount: The number of vertices in vertexCoords. The size of vertexCoords is 3 * vcCount.

• Indices: The vertex indices per face: {f0i0, f0i1, f0i2, f0if0Count-1, ..., f1i0, ...}

• indicesCount: The size of indices.

• faceCounts: The number of vertices per face: { f0Count, f1Count, ...}

• faceCountsCount: The number of faces.

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 20

• holes: List which assigns hole-faces to faces. Holes must have the opposite vertex-ordering as

the encircling face.

• holesCount: The number of entries in holes.

The operations of the start rule will be applied to that geometry as a first step in the generation process

and typically create successor shapes which result in the shape tree.

Initial shape attributes are matched by name and type against attribute definitions in the CGB file and

the generation will use the values from the CGA attribute map if they match. Typical examples of initial

shape attributes for a building are e.g. numberOfFloors, roofType, or LOD.

A simple quad geometry:

static const double Quad_vertices[] = {0, 0, 0, 0, 0, 30, 30, 0, 30, 30, 0, 0};

static const uint32_t Quad_indices[] = {0, 1, 2, 3};

static const uint32_t Quad_faceCounts[] = {4};

Create builders and set initial shape attributes:

prt::AttributeMapBuilder* amb = prt::AttributeMapBuilder::create();

amb->setFloat(L"numberOfFloors", 12);

prt::InitialShapeBuilder* isb = prt::InitialShapeBuilder::create();

isb->setAttributes(

cgbURI,

startRule->getName(),

0,

L"Quad",

amb->createAttributeMapAndReset(),

resolveMap);

Set initial shape geometry:

isb->setGeometry(Quad_vertices, 12, Quad_indices, 4, Quad_faceCounts, 1);

Create initial shape from builder:

const prt::InitialShape* shape = isb->createInitialShapeAndReset();

Generating 3D models
Having all data ready, generating a 3D model mainly becomes choosing a set of encoders and setting

their options. A client can query the procedural runtime by invoking prt::createEncoderInfo() or you

as a developer can have a look at the encoder documentation for available options of the supplied

encoders. Encoder options are simple key-value maps and have to be validated before they can be

passed to prt::generate(). Since encoders may cover a wide range of use cases, not all combinations

of options are valid. The validation step ensures that only non-conflicting options are passed to

prt::generate(). The prt::EncoderInfo.createValidatedOptionsAndStates() member function

is free to change any option in order to create a valid configuration.

For every encoder option there is an associate xxx_state key that maps to one of the following string

values:

• "ENABLED": The corresponding option can be configured as part of this configuration.

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 21

• "DISABLED": The corresponding option cannot be configured as part of this configuration and
should not be changed.

• "HIDDEN": The corresponding option is ignored as part of this configuration.

Although a client may find out more about the validation and option configuration by looking at the

option state, its main purpose is supporting the dynamic generation and updating of a user interface for

an encoder. For example CityEngine queries the encoder for its options and creates corresponding user

interface elements. The visibility and enable/disable state of these user interface elements is directly

controlled by corresponding state values (see Figure 8).

Even though the internal execution of prt::generate() may use multiple threads, the call itself is

synchronous and all results are guaranteed to be passed to the callbacks before the call returns. The

client is free to destroy all created PRT objects after prt::generate().

Because prt::generate() tends to be expensive in term of CPU time, usually multiple encoders are

passed to prt::generate() and run at the same time. If your application has multiple encoders which

have to run together (e.g. writing transformation node information to one file together and the

geometry to another file) it is also easier to pass multiple encoders than combining output of multiple

prt::generate() calls as a post-processing step. The list of encoder of a typical invocation of

prt::generate() include com.esri.prt.core.CGAPrintEncoder,

com.esri.prt.core.CGAErrorEncoder, optionally the com.esri.prt.core.CGAReportEncoder if you

need access to CGA reports, and content specific encoders. If some output is not required, it is more

efficient to omit the corresponding encoder in the prt::generate() call than discarding the output in

the callbacks. Even though the shape tree is only generated once for all encoders, every encoder iterates

the shape tree individually and may cause considerable overhead for large shape trees.

Before calling generate you may setup occluders. See the documentation of

prt::generateOccluders() and the CGA reference for occlusion queries for a detailed discussion of

occlusion and the generation process.

Get encoder info:

const wchar_t* encoder = L"com.esri.prt.codecs.OBJEncoder";

const prt::EncoderInfo* encInfo = prt::createEncoderInfo(encoder);

const prt::AttributeMap* encOptions = 0;

Create encoder options:

encInfo->createValidatedOptionsAndStates(0, &encOptions);

Trigger procedural 3D model generation:

prt::generate(&shape, 1, 0, &encoder, 1, &encOptions, callbacks, cache, 0);

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 22

Figure 8- Export user interface dynamically created by CityEngine based on validated encoder options.

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 23

Writing Procedural Runtime Extensions
While the PRT API allows you as a 3rd party developer to work with rule packages and procedurally

generate 3D models, you are limited to the SDK adaptors and codecs. To get past the PRT API you have

to build a shared library and extend PRTX classes with custom code. This section outlines the

implementation requirements for adaptors and codecs. Please note that all your classes and functions

discussed here must be visible in the shared library and you have to export these symbols with

__declspec(dllexport) on Windows and with __attribute__(visibility("default")) on Linux

and are omitted in the code samples below for simplicity. The SDK includes complete examples of

extensions which are recommended as a starting point for writing your own extension.

Extension Life Cycle
All procedural runtime extensions follow the same, managed life cycle. Extensions have to register

factories which are used by the runtime to create adaptor and codec instances during PRT API calls. For

every resource access or codec operation a new instance from the corresponding factory is requested.

While there may be many instances of the same type in use at a given point in time, member functions

on extensions are guaranteed to be invoked on a single thread only and therefore no synchronization is

necessary (see “Multi-Threading” on page 16). Extensions should not allocate or use any global data

because this would violate the stateless design principle (see “Memory Management” on page 15).

Codecs have access to a cache instance for preserving state over multiple invocations although state is

typically managed by the data backend for you.

In order to be loaded and initialized by the runtime during the prt::init() call, extension libraries

must at least export the following functions:

extern "C" {

 void registerExtensionFactories(prtx::ExtensionManager* manager) {

 manager->addFactory(new MyFactory());

 ...

 }

 void unregisterExtensionFactories(prtx::ExtensionManager* manager) {}

 int getVersionMajor() {return 1;}

 int getVersionMinor() {return 0;}

}

The getVersionMajor() and getVersionMinor() functions state the runtime version this extension

can work with. If the version constraint is satisfied, the runtime calls registerExtensionFactories()

during initialization which allows an extension to register all its adaptor and codec factories with the

runtime’s extension manager.

Factories
For each extension type there is a factory base class available in in the PRTX interface which you have to

subclass as a 3rd party developer in order to provide custom functionality:

• prtx::AdaptorFactory: An adaptor factory which creates prtx::Adaptor instances.

Implement a subclass if you want to add your own adaptor.

• prtx::DecoderFactory: An adaptor factory which create prtx::Decoder instances. Implement

a subclass if you want to add your own decoder.

• prtx::EncoderFactory: An adaptor factory which create prtx::Encoder instances. Implement

a subclass if you want to add your own encoder.

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 24

Factory implementations have to provide at least a unique ID, a name, and a description. It is

recommended to use a reverse-domain scheme (e.g. “esri.com” becomes “com.esri.xxx”) for the ID in

order to avoid ID conflicts among different 3rd party implementations. Depending on the factory type,

more information is required such as icons in the case of encoder factories. If multiple factories can

handle a specific request, prtx::Extension.getMerit() is called for disambiguation. Higher merits are

preferred over lower merits thus 3rd party extensions may override the supplied implementations by

returning a high merit. Merits < 10.0 are reserved and the supplied extensions have a default merit of

1.0. Please see the extension specific class documentation for details regarding factory implementation.

Adaptors
Most adaptors will subclass prtx::StreamAdaptor which create a std::istream instance for a given

URI. If the adaptor is able to handle structured content (e.g. for an archive file or a database) the

prtx::Adaptor.createResolveMap() member function should be implemented as well. The following

example shows a simple adaptor for file URIs:

std::istream* FileSystemAdaptor::createStream(prtx::URIPtr uri, const prt::ContentType& ct) {

 if (uri->getScheme() == prtx::URIUtils::SCHEME_FILE) {

 const boost::filesystem::path p(uri->getPath());

 if (!boost::filesystem::exists(p))

 throw std::invalid_argument("file system path does not exist:" + p.string());

 return new boost::filesystem::ifstream(p, std::ifstream::in | std::ifstream::binary);

 } else {

 log_werror(L"FileSystemAdaptor::createStream():unable to handle URI='%s'")%uri->wstring();

 throw prtx::StatusException(prt::STATUS_INVALID_URI);

 }

}

void FileSystemAdaptor::destroyStream(std::istream* stream) {

 delete stream;

}

prt::ResolveMap* FileSystemAdaptor::createResolveMap(prtx::URIPtr) const {

 throw util::RuntimeErrorST("FileSystemAdaptor::createResolveMap() is not implemented.");

}

Decoder
Decoders are constructed by the corresponding decoder factory which also supplies the decoder info. A

PRT client can query that information by calling prt::getDecoderInfo(). A decoders is a codec

implementation which converts a std::istream to a PRTX content object such as prtx::Geomtry or

prtx::Texture. The PRTX interface provides the following base classes which a 3rd party extension

writer can subclass:

• prtx::GeometryDecoder: Create a prtx::Geometry object from a given stream.

• prtx::MaterialDecoder: Create a prtx::Material object from a given stream.

• prtx::TextureDecoder: Create a prtx::Texture object from a given stream.

Decoders tend to be more complex than adaptors because they have to deal with complex data types
such as geometry or material. Decoders are typically not written from scratch but use existing libraries
for the main part of their work. For example the supplied texture decoders are based on GDAL and are
just a small wrapper around GDAL functions.
The decoder’s work has to be performed in the decode(ContentPtrVectorVariant& results,
std::istream& stream, prt::ICache* cache, const std::wstring& key, prtx::ResolveMap

const* resolveMap, std::wstring& warnings) member function. While typically only a single
object is constructed by a decoder, some formats may translate to multiple instances (e.g. material files

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 25

with multiple material definitions or geometry with multiple level of detail) and thus a decoder fills the
results vector instead of simply returning an instance. A key and a resolve map is also provided for
cache lookups, or if a decoder needs access to URI specific components (e.g. the query part of an URI).
Because a prtx::Texture and prtx::Material are attributable objects they supports optional
metadata such as a spatial reference for textures. Please see the PRTX documentation for predefined
metadata keys.

Resolve Map Providers
Some formats (e.g. geometry formats such as FBX, glTF, USD) use embedding of related assets (e.g.

textures for FBX geometry). For such formats, Resolve Map Providers are used to list all secondary assets

inside a file. Typically, a Resolve Map Provider works in tandem with an Adaptor. The Resolve Map

Provider links all embedded assets to a URI that has the custom Adaptor’s URI scheme as outer most

scheme. The related decoder must be aware how the keys are constructed for these embedded assets

to resolve them.

Encoder
Encoders are constructed by the corresponding factory which also supplies the encoder info. A PRT

client can query that information by calling prt::getEncoderInfo(). The encoder info is crucial for

implementing a generic client that can dynamically build for example a user interface without having

prior (compile-time) information about an encoder.

Encoders transform the shape tree into a final 3D model or extract shape tree information (see “Shape

Tree” on page 7). Like decoders, encoders are typically based on existing libraries and act as a wrapper

around these library calls. For example the com.esri.prt.codecs.VOBEncoder is based on the closed-

source VOB libraries provided by e-on software. Currently there are two base classes defined for

geometry and texture:

• prtx::GeometryEncoder: Encode a 3D model through the callbacks interface based on shape

tree information.

• prtx::TextureEncoder: Encode a 2D raster image through the callbacks interface based on

prtx::Texture.

Usually encoders use the client callbacks write() member function to send data to the client. Such

encoders are generic in the sense that all client implementations that use a subclass of

prt::SimpleOutputCallbacks are able to process the encoder output. CityEngine for example is able

to dynamically create a user interface for such an encoder and write the output to files. But some

encoders may only work with a specific callbacks implementation and pass data by reference instead of

serializing it via write() calls. CityEngine for example uses a render encoder that creates OpenGL data

structures in memory that are passed as opaque handles back via an extended callbacks interface known

to both the encoder and the client. The renderer uses these handles for rendering, unaware of the

underlying geometry and material data on the GPU.

Encoder Life Cycle
Encoders are created as part of the generation process when the runtime is preparing the output.

Before calling prt::generate(), the client usually prepares validated encoder options by calling

prt::EncoderInfo.createValidatedOptionsAndStates(). Hence there is a close relationship

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 26

between the encoder info returned from the encoder factory and the actual encoder implementation.

The actual encoding goes through the following steps:

1. After creation, prtx::Encoder.init() is called once with the current prtx::GenerateContext

where an encoder can allocate data structures for subsequent prtx::Encoder.encode() calls.

2. Initial shapes are filtered by prtx::Encoder.validate(). This member function is invoked for

every initial shape passed to prt::generate().

3. For every initial shape that passed the prtx::Encoder.validate() filter,

prtx::Encoder.encode() is called where the actual encoding takes place. Encoders may

aggregate and collect information in data structures allocated during prtx::Encoder.init().

Please note that prtx::Encoder.encode() may also be called as part of a nested encoding. For

example an encoder for a 3D file format may call a texture encoder during its execution.

4. After all initial shapes are processed, prtx::Encoder.finish() is called which allows the

encoder to finish up and free resources allocated during prtx::Encoder.init(). Some encoder

may defer part of their work to prtx::Encoder.finish() and only collect data during the

prtx::Encoder.encode() calls. For example most of the supplied geometry encoders allow

optional sorting by material which can only take place after all shape tree data from all initial

shapes has been processed.

Encoder Utilities
Some encoding tasks are very generic and the PRTX interface provides a set of utility functions that

relieve encoder writers from re-implementing this functionality. Please see the PRTX utility

documentation for a detailed description. Here only the prtx::EncodePreparator and

prtx::NamePreparator bear mentioning. The name preparator helps organizing name spaces according

to specific rules e.g. for unique material and file names. The encode preparator handles most of the

burden of combining and optimizing shape geometries into a final 3D model.

Check callbacks type, allocate and initialize members and utility objects:

void MyEncoder::init(prtx::IGenerateContext& context) {

 prt::SimpleOutputCallbacks* callbacks =

dynamic_cast<prt::SimpleOutputCallbacks*>(getCallbacks());

 if(callbacks == 0)

 throw prtx::StatusException(prt::STATUS_ILLEGAL_CALLBACK_OBJECT);

 mNamePreparator = new MyNamePrepartor();

 mNamespaceMaterials = mNamePreparator.newNamespace();

 mNamespaceMeshes = mNamePreparator.newNamespace();

 mNamespaceDocumentFilenames = mNamePreparator.newNamespace();

mPreparator = prtx::EncodePreparator::create(true, mNamePreparator, mNamespaceMeshes,

mNamespaceMaterials);

}

Collect leaf shapes, extract combined geometry according to flags from encode preparator, and write

them to callbacks. Please see the prtx::EncodePreparator::PreparationFlags for a detailed

description:

void MyEncoder::encode(prtx::IGenerateContext& context, size_t initialShapeIndex) {

 const prtx::InitialShape& is = *context.getInitialShape(initialShapeIndex);

 try {

 prtx::LeafIteratorPtr li = prtx::LeafIterator::create(context, initialShapeIndex);

 for(prtx::IShapePtr shape = li->getNext(); shape.get() != 0; shape = li->getNext())

 mPreparator->add(context.getCache(), shape, is.getAttributeMap());

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 27

 } catch(...) {

 log_wtrace(L"MyEncoder::encode: error");

 }

 util::computeLocalOffset(&context, initialShapeIndex, mLocalOffsetMode, mPreparator,

mLocalOffset);

 std::vector<prtx::EncodePreparator::FinalizedInstance> finalizedInstances;

 mPreparator->fetchFinalizedInstances(finalizedInstances,

 prtx::EncodePreparator::PreparationFlags()

.instancing(false)

 .mergeByMaterial(true)

 .triangulate(true)

 .mergeVertices(true)

 .cleanupVertexNormals(true)

 .cleanupUVs(true)

 .vertexNormalAction(VertexNormalProcessor::PASS)

 .holeAction(HoleProcessor::PASS)

 .indexSharing(INDICES_SEPARATE_FOR_ALL_VERTEX_ATTRIBUTES)

 .mergeToleranceVertices(1e-3)

 .mergeToleranceNormals(1e-3)

 .mergeToleranceUVs(1e-3)

 .offset());

 prt::SimpleOutputCallbacks* callbacks =

 dynamic_cast<prt::SimpleOutputCallbacks*>(getCallbacks());

 const std::wstring name = util::getFilename(mBaseName, EXT.c_str(), mFileGranularity,

 mFileIndex, initialShapeName, mNamePreparator, mNamespaceDocumentFilenames);

 write3DModel(context, finalizedInstances, name, callbacks);

}

Write combined materials and cleanup:

void MyEncoder::finish(prtx::IGenerateContext& context) {

 prt::SimpleOutputCallbacks* callbacks =

 dynamic_cast<prt::SimpleOutputCallbacks*>(getCallbacks());

 writeMaterials(context, callbacks);

 delete mNamePreparator;

}

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 28

Conclusion
This document gives an overview of the ArcGIS procedural runtime. Please check the SDK examples and

the SDK documentation for more detailed descriptions of classes and member functions. Other concepts

such as occlusion have to be seen in the context of CGA thus the CGA online help is also a valuable

source of information.

The goal of the CityEngine SDK is to give to you as a 3rd party developer a powerful procedural modeling

toolkit in the most convenient way. Do not hesitate to contact Esri if you have specific needs, comments,

or feedback regarding the procedural runtime and we will evolve the product accordingly.

ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 29

List of Figures
Figure 1 - Procedural runtime overview ... 5

Figure 2 - Illustration of a CGA shape. Its parent coordinate system is defined by the pivot. Relative to

the pivot, the scope defines a bounding box. Inside the scope, the geometry of the shape is

contained. Note that CGA operates in right-hand Y-up coordinate system. 7

Figure 3 - A shape tree and a list of shape attributes. .. 8

Figure 4 - A SPU removes a shape from the set of active shapes, creates successor shapes according to

the shape rule and adds them to the set of active shapes. .. 9

Figure 5 - The content of a rule package. ... 10

Figure 6 - Procedural runtime resource access. A symbolic name ("sphere.obj") is translated to an URI

with the help of the resolve map. The URI scheme is then used to find adaptors which create a

stream for further processing by decoders. .. 11

Figure 7- Inspector user interface dynamically created by CityEngine based on rule file info. 19

Figure 8- Export user interface dynamically created by CityEngine based on validated encoder options. 22

	Introduction
	Concepts
	The two worlds: PRT and PRTX
	PRT – Procedural Runtime Client API
	PRTX – Procedural Runtime Extension Interface
	Shape
	Shape Tree
	CGB Files
	Shape Processing Unit
	Resolve Map
	Rule packages
	Adaptors
	Codecs
	Client Callbacks
	Client-Side Caching
	Logging

	Design Principles
	Modularity
	Memory Management
	Data Types
	Multi-Threading
	Error Handling
	Internationalization

	Using the Procedural Runtime API
	Initialization and Shutdown
	Resolve Map, Callbacks, and Cache
	Rule File Information
	Initial Shape
	Generating 3D models

	Writing Procedural Runtime Extensions
	Extension Life Cycle
	Factories
	Adaptors
	Decoder
	Resolve Map Providers
	Encoder
	Encoder Life Cycle
	Encoder Utilities

	Conclusion
	List of Figures

