
 

 
 
 
 
 
 
 
 
 
 

ARCGIS PROCEDURAL RUNTIME 
 

ARCHITECTURE 
  

 
Abstract 

ArcGIS CityEngine is based on the procedural runtime (PRT), which is the 
underlying engine that supports also two GP tools in ArcGIS 10.X and 
drives procedural symbology in ArcGIS Pro. The CityEngine SDK enables 
you as a 3rd party developer to integrate the procedural runtime in your 
own client applications (such as DCC or GIS applications) taking full 
advantage of the procedural core without running CityEngine or ArcGIS. 
CityEngine is then needed only to author the procedural modeling rules. 
Moreover, using the CityEngine SDK, you can extend CityEngine with 
additional import and export formats. This document gives an overview 
of the procedural runtime architecture, capabilities, its API, and usage. 



ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 1 

Copyright © 2013-2023 Esri, Inc. 

All rights reserved. 

 

The information contained in this document is the exclusive property of Environmental Systems Research Institute, Inc. This work is protected 

under United States copyright law and other international copyright treaties and conventions. No part of this work may be reproduced or 

transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or 

retrieval system, except as expressly permitted in writing by Environmental Systems Research Institute, Inc. All requests should be sent to 

Attention: Contracts Manager, Environmental Systems Research Institute, Inc., 380 New York Street, Redlands, CA 92373-8100 USA. 

The information contained in this document is subject to change without notice. 

U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS 

Any software, documentation, and/or data delivered hereunder is subject to the terms of the License Agreement. In no event shall the 

Government acquire greater than RESTRICTED/LIMITED RIGHTS. At a minimum, use, duplication, or disclosure by the Government is subject to 

restrictions as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or FAR §12.211/12.212 

(Commercial Technical Data/Computer Software); and DFARS §252.227-7015 (NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer 

Software), as applicable. Contractor/Manufacturer is Environmental Systems Research Institute, Inc., 380 New York Street, Redlands, CA 92373- 

8100 USA. In the United States and in some countries, ARC/INFO, ArcCAD, ArcView, ESRI, PC ARC/INFO, and CityEngine are registered 

trademarks; 3D Analyst, ADF, AML, ARC COGO, ARC GRID, ARC NETWORK, ARC News, ARC TIN, ARC/INFO, ARC/INFO LIBRARIAN, ARC/INFO—

Professional GIS, ARC/INFO—The World's GIS, ArcAtlas, ArcBrowser, ArcCAD, ArcCensus, ArcCity, ArcDoc, ARCEDIT, ArcExplorer, ArcExpress, 

ARCPLOT, ArcPress, ArcScan, ArcScene, ArcSchool, ArcSdl, ARCSHELL, ArcStorm, ArcTools, ArcUSA, ArcUser, ArcView, ArcWorld, Atlas GIS, 

AtlasWare, Avenue, BusinessMAP, DAK, DATABASE INTEGRATOR, DBI Kit, ESRI, ESRI—Team GIS, ESRI—The GIS People, FormEdit, Geographic 

Design System, GIS by ESRI, GIS for Everyone, GISData Server, IMAGE INTEGRATOR, InsiteMAP, MapCafé, MapObjects, NetEngine, PC ARC/INFO, 

PC ARCEDIT, PC ARCPLOT, PC ARCSHELL, PC DATA CONVERSION, PC NETWORK, PC OVERLAY, PC STARTER KIT, PC TABLES, SDE, SML, Spatial 

Database Engine, StreetMap, TABLES, the ARC COGO logo, the ARC GRID logo, the ARC NETWORK logo, the ARC TIN logo, the ARC/INFO logo, 

the ArcCAD logo, the ArcCAD WorkBench logo, the ArcData emblem, the ArcData logo, the ArcData Online logo, the ARCEDIT logo, the 

ArcExplorer logo, the ArcExpress logo, the ARCPLOT logo, the ArcPress logo, the ArcPress for ArcView logo, the ArcScan logo, the ArcStorm logo, 

the ArcTools logo, the ArcView 3D Analyst logo, the ArcView Data Publisher logo, the ArcView GIS logo, the ArcView Internet Map Server logo, 

the ArcView Network Analyst logo, the ArcView Spatial Analyst logo, the ArcView StreetMap logo, the Atlas GIS logo, the Avenue logo, the 

BusinessMAP logo, the BusinessMAP PRO logo, the Common Design Mark, the DAK logo, the ESRI corporate logo, the ESRI globe logo, the 

MapCafé logo, the MapObjects logo, the MapObjects Internet Map Server logo, the NetEngine logo, the PC ARC/INFO logo, the SDE logo, the 

SDE CAD Client logo, The World's Leading Desktop GIS, ViewMaker, Water Writes, and Your Personal Geographic Information System are 

trademarks; and ArcData, ARCMAIL, ArcOpen, ArcQuest, ArcWatch, ArcWeb, Rent-a-Tech, www.esri.com, and @esri.com are service marks of 

Environmental Systems Research Institute, Inc. The names of other companies and products herein are trademarks or registered trademarks of 

their respective trademark owners. 

  



ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 2 

 

Contents 
Introduction .................................................................................................................................................. 4 

Concepts ....................................................................................................................................................... 5 

The two worlds: PRT and PRTX ................................................................................................................. 5 

PRT – Procedural Runtime Client API ........................................................................................................ 6 

PRTX – Procedural Runtime Extension Interface ...................................................................................... 6 

Shape......................................................................................................................................................... 6 

Shape Tree ................................................................................................................................................ 7 

CGB Files.................................................................................................................................................... 8 

Shape Processing Unit ............................................................................................................................... 9 

Resolve Map .............................................................................................................................................. 9 

Rule packages .......................................................................................................................................... 10 

Adaptors .................................................................................................................................................. 10 

Codecs ..................................................................................................................................................... 11 

Client Callbacks ....................................................................................................................................... 12 

Client Side Caching .................................................................................................................................. 13 

Logging .................................................................................................................................................... 13 

Design Principles ......................................................................................................................................... 15 

Modularity .............................................................................................................................................. 15 

Memory Management ............................................................................................................................ 15 

Data Types ............................................................................................................................................... 15 

Multi-Threading ...................................................................................................................................... 16 

Error Handling ......................................................................................................................................... 16 

Internationalization................................................................................................................................. 16 

Using the Procedural Runtime API .............................................................................................................. 17 

Initialization............................................................................................................................................. 17 

Resolve Map, Callbacks, and Cache ........................................................................................................ 17 

Rule File Information .............................................................................................................................. 18 

Initial Shape............................................................................................................................................. 19 

Generating 3D models ............................................................................................................................ 20 

Writing Procedural Runtime Extensions ..................................................................................................... 23 

Extension Life Cycle ................................................................................................................................. 23 



ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 3 

Factories .................................................................................................................................................. 23 

Adaptors .................................................................................................................................................. 24 

Decoder ................................................................................................................................................... 24 

Encoder ................................................................................................................................................... 25 

Encoder Life Cycle ............................................................................................................................... 25 

Encoder Utilities .................................................................................................................................. 26 

Conclusion ................................................................................................................................................... 28 

List of Figures .............................................................................................................................................. 29 

 

 

  



ArcGIS Procedural Runtime 5/25/2023 – Esri R&D Center Zurich 4 

Introduction 
With the addition of CityEngine to Esri’s family of desktop applications, the need for a tighter integration 

of the procedural 3D technology with Esri’s line of 2D and 3D offerings emerged. The first step with 

CityEngine 2012 was extending the support of GIS data formats for seamless interoperability. With 

CityEngine 2013, the procedural core technology was modularized and now all Esri desktop applications 

use the same engine for procedural 3D model generation. Additionally, customers from the 3D content 

creation and entertainment industry asked for procedural technology independent of CityEngine for 

their applications and in-house pipelines which we wanted to answer with an independent procedural 

engine. 

These are the main driving forces behind the development of the ArcGIS procedural runtime. The 

runtime is a software module that essentially encapsulates the procedural core of CityEngine into a few 

shared libraries that can be used independent of CityEngine by any client application running on 

Windows or Linux. In addition to that, the runtime has been redesigned to better fit large-scale multi-

core and server deployments. The goal of the CityEngine SDK is to offer you as a 3rd party developer a 

powerful yet convenient toolkit for your procedural modeling needs. 

This document outlines the architecture, concepts, and design principles of the procedural runtime. 

Please refer to the API documentation for a more detailed discussion of the individual classes and 

functions. 
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Concepts 
This section introduces the basic concepts of the procedural runtime. Prior knowledge of CGA 

(Computer Generated Architecture – a domain specific, proprietary procedural modelling language) and 

CityEngine helps understanding this section as an example use case of the procedural runtime.  

Figure 1 gives an overview of the components involved. A client application (e.g. CityEngine [1]) invokes 

the runtime through the PRT API [2] whose key functionality is to trigger the procedural generation of 

3D geometry which is performed by Shape Processing Units (SPUs [4]). In addition to the PRT API 

invocations, you as a 3rd party developer can hook into the generation process by extending the runtime 

through decoders, encoders and adaptors using the PRTX interfaces [3]. External resource access (e.g. 

for 3D models or textures) and caching is handled by the data backend [5]. The callback interface [6] 

closes the loop and communicates the generated 3D models back to the client application. 

   

Figure 1 - Procedural runtime overview 

The two worlds: PRT and PRTX 
From a 3rd party developer point of view the procedural runtime consists of two worlds: PRT and PRTX. 

PRT is the API that you will invoke to trigger a procedural generation of 3D content. In order to do that, 

you configure PRT for your generation task and supply the necessary data, encoders, and rules to the 

runtime which in turn will produce the requested output. 

PRTX is the extension interface of the procedural runtime (the X stands for eXtension). PRTX is a 

collection of classes and implementation guidelines that allow you to extend the runtime. Currently it 

can be extended by custom encoders and decoders (e.g. for 3D or raster file formats) as well as for 

accessing non-file based data sources (e.g. an asset library in a database). Codecs are not limited to file 

formats. For example, CityEngine uses an encoder that creates OpenGL data structures as part of the 

generation process. 

Depending on your use case, you will work with both PRT and PRTX or only one of each. The following 

table highlights a few common use cases and their PRT and PRTX implications: 
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Use case examples PRT PRTX 

Procedural 3D model generation in custom 
client application with the supplied codecs 
and callbacks (e.g. command line tool) 

- Invoke PRT API from client 
application 
- Use one of the supplied callback 
implementations for results 

 

Integrate procedural 3D model generation 
with existing Digital Content Creation (DCC) 
application 

- Invoke PRT API from DCC 
application 
- Implement custom callback for 
transferring 3D geometry data back 
to DCC application 

- Write encoder for in-memory 3D 
geometry data suitable for custom 
callback implementation (or custom 
output format) 

Create a language binding for PRT - Wrap PRT API calls for target 
language 
- Implement custom callback for 
transferring 3D geometry data back 
to the caller 

Write encoder for in-memory 3D 
geometry data suitable for custom 
callback implementation (or custom 
output format) 

Extend CityEngine with custom export 
functionality 

 Write encoder for custom output 
format 

Extend CityEngine with custom asset 
reader functionality 

 Write decoder for custom input 
format 

Add custom asset repository access Use PRT API with URI scheme for 
custom asset repository 

Write adaptor for custom asset 
repository URI scheme 

Custom (persistent) cache implementation 
/ caching policy 

Implement the PRT cache protocol  

 

PRT – Procedural Runtime Client API 
PRT is a relatively concise API which allows you to submit generation jobs to the runtime and query the 

runtime for its capabilities in terms of encoders, decoders, and rule files. The API is organized in the prt 

namespace and minimizes the use of C++ constructs. Memory allocation and de-allocation is hidden 

behind a “compiler firewall” so the C-runtime library (CRT) of the client can be chosen freely. In turn, the 

API is free from STL and many C++ features (e.g. exceptions) in order to reduce compiler dependency. 

Compilers sharing the same Application Binary Interface (ABI) should be able to compile and link against 

the provided libraries and headers without special configuration. This ensures that a client application 

does not need to change its compiler and linker setting in order to access the PRT API. In consequence, 

the API is rather C-stylish and may need some interface glue in an advanced C++ client application. Esri 

provides headers and libraries for all supported platforms. 

PRTX – Procedural Runtime Extension Interface 
The PRTX programming interface is a larger collection of classes and functions that allow fine grained 

access to the data structures created during procedural 3D geometry generation (most notably the 

shape tree – see “Shape Tree” on page 7). 

In contrast to the PRT API, the PRTX programming interface in the prtx namespace uses all available 

C++14 features (including exceptions which may occur at any point during execution) as well as a 

selected subset of STL classes. PRTX extensions are assumed to be provided in their own shared libraries 

and have to follow the same rules for compilation and linkage as the procedural runtime itself. Please 

refer to the individual platform technical notes for the specific compiler and linker settings. 

Shape 
Shape is one of the most fundamental data structures used throughout the procedural runtime. The 

CGA shape grammar is a language to define a set of configurations of shapes which are constructed by 
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applying CGA operations to shapes. Shapes are basically a labeled container for attributes and 

parameters. The starting shape for a generation process is called the initial shape. The various CGA 

operations modify shape attributes and/or create new shapes. A shape consists of: 

• Symbol: The name or label of the shape. The symbol corresponds to the rule that will generate 

successor shapes. Note that multiple shapes with the same symbol may exist during a generation. 

• Parameters: The CGA shape grammar is a parametric grammar and each shape can have a 

parameter list associated with it. 

• Attributes: The attributes contain the spatial description (including the geometry) of the shape as 

well as key-value pairs. Attributes are accessible in the encoder and are used to create the resulting 

output geometry and materials. A shape has the following attributes: 

o Pivot: The pivot describes the shape’s coordinate system and is defined by a position vector 

P (origin) and an orientation vector O (axis). The orientation vector is encoded as ordered 

rotation in degrees around x, y and z axis. The pivot is given in world coordinates.  

o Scope: The scope represents the oriented bounding box for the shape in space relative to 

the pivot and is defined by three vectors: the translation vector T, the rotation vector R 

(similar encoded as the orientation vector above), and the size vector S. 

o Geometry: The geometry attribute contains the 3D description of the shape’s appearance 

(relative to the scope). The geometry is encoded as a polygonal mesh and may contain 

holes.  

o Shader and material attributes: These attributes further specify the appearance of the 

shape. 

o Generic attributes: These named attributes are defined in the CGA file and are typically 

user-settable in a client application (e.g. using the Inspector in CityEngine). 

 

Figure 2 - Illustration of a CGA shape. Its parent coordinate system is defined by the pivot. Relative to the pivot, the scope 
defines a bounding box. Inside the scope, the geometry of the shape is contained. Note that CGA operates in right-hand Y-up 
coordinate system. 

Shape Tree 
The shape tree is the result of a generation and can be compared to a traditional scene graph with its 

transformational hierarchy. An encoder accesses the shape tree through an iterator that allows shape-

tree traversal and accessing a shape and its attributes. The shape tree represents the generation history 

of the applied rules and contains in turn additional structural information. However, in most cases the 

structure itself is of no interest and only the geometries of the leaf nodes are combined into a 3D model 

by an encoder. 
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The main difference between a shape tree and the traditional scene graph is that each node in the 

shape tree contains geometry. Usually only the combined geometry of the leaf nodes are required for 

the final 3D model. But for some use cases or debugging purposes also intermediate shape geometries 

can be of interest. Figure 3 shows a part of a shape tree with leaf shapes as rectangular boxes and 

intermediate nodes as arrow boxes. 

Because of its generative nature, it is very common and easy to repeat geometry with CGA operations. 

The procedural runtime detects and minimizes internal geometry duplications which enables efficient 

encoding for formats that support for example instancing. 

           

Figure 3 - A shape tree and a list of shape attributes. 

CGB Files 
CGA rule files are text files which define rules (shape transformations) by means of operations and are 

written according to the CGA language specification. CGA files are compiled by the CGA compiler into a 

binary representation called CGB (CGA-Binary). The CGA compiler is built-into the CityEngine desktop 

application. CGB is the only rule file format that can be consumed by the procedural runtime.  

In order to avoid the introduction of yet another platform-independent object file format, a CGB file 

follows the Java class file specification. Even though CGB files are valid Java class files, a JVM is not 
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required for execution. The runtime provides its own VM implementation in the form of the Shape 

Processing Unit (SPU) optimized for procedural 3D geometry generation. 

The PRT API allows a client application to introspect a CGB file (prt::getRuleFileInfo()) and extract 

information about rules and attributes. CGA annotations such as @Range() or @StartRule are directly 

accessible from the rule file info and can be used to dynamically configure e.g. a user interface for initial 

shape editing or to configure initial shape attributes automatically.  

Shape Processing Unit 
A CGB file is interpreted by one or multiple SPUs which implement the subset of the JVM specification 

required for the execution of procedural rules. A SPU executes a rule by applying operations to a given 

shape which will in turn create successors shapes and/or modify shape attributes. These successor 

shapes are added to a set of active shapes from which a pool of SPUs consumes shapes and again 

applies rules. This process continues until the set of active shapes only contains leaf shapes. Figure 4 

illustrates this process during which the successor-predecessor shape hierarchy naturally forms the 

shape tree. 

  

Figure 4 - A SPU removes a shape from the set of active shapes, creates successor shapes according to the shape rule and adds 
them to the set of active shapes. 

Resolve Map 
CGA defines operations (e.g. i() or texture()) that reference external assets such as 3D models (e.g. a 

Collada file) or textures (e.g. a TIFF file). These operations are used for setting the geometry and 

material attributes of a shape. Thus for most CGB files, supplementary assets are required in order to 

generate the expected 3D result. Asset references in CGA are symbolic names because they do not 

directly refer to a concrete resource but just act as a distinctive name. In order to translate a symbolic 

name to a resource access, the procedural runtime requires a supporting data structure that maps from 

symbolic names to URIs. This data structure is called the resolve map which contains symbolic names as 

keys and URIs as values. The client creates this map either programmatically using the 

prt::ResolveMapBuilder or extracts it from a rule package (see section “Rule packages”) by invoking 

prt::createResolveMap() and passes it to the runtime together with the initial shapes. The data 
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backend uses this map during the execution of operations that reference external assets for resolving 

the symbolic name to an actual URI. With the help of adaptors and decoders, the resource content is 

then consumed. 

Rule packages 
As mentioned above, most CGB files require additional assets in order to generate the expected 3D 

result. A rule package is an archive file with a rpk extension that encapsulates a CGB file and its 

supplementary assets. Rule packages are 7zip (www.7zip.org) archives and contain a CGB, 3D assets, and 

textures. Furthermore, the optional .resolvemap.xml entry in the root of the archive defines the 

mapping between symbolic CGA names and archive entries and is used by the procedural runtime to 

create a resolve map for a given RPK. Figure 5 shows the content of a rule package with the 

.resolvemap.xml at the top, a few assets and the CGB file at the bottom. 

 

Figure 5 - The content of a rule package. 

Rule packages are usually created with CityEngine. Rule packages written by CityEngine contain a single 

CGB file which has a single rule annotated with @StartRule. This is the required RPK format for the 

ArcGIS 10.2 GP tools.  

Adaptors 
Adaptors are one of the two extension points of the procedural runtime. Adaptors can register 

themselves for a specific URI scheme and are responsible for resolving an URI and returning a stream 

that can then be processed by the decoders. In order to access a resource, the data backend uses the 

resolve map to translate a symbolic name into an URI. The URI’s scheme is then used to find an adaptor 

that is able to handle the URI. The adaptor handles an URI by constructing a stream that can be passed 

on to decoders which in turn read from that stream and create in-memory PRTX data structures (e.g. 

prtx::Geometry). Decoders are searched with the file extension extracted from the URI. Application 

specific URI schemes can be registered for special resource lookup and decoder combinations. ArcGIS 

for instance uses the memory URI scheme (see below) to give direct memory access to decoders running 

in the same address space. Currently the following adaptors are supplied: 

http://www.7zip.org/
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• The file system adaptor handles the file URI scheme and returns a stream to the file content 

denoted by the URI. See http://tools.ietf.org/html/rfc1738 for a discussion of file URIs. 

• The zip file adaptor handles the zip URI scheme and returns a stream of the zip file entry 

denoted by the URI. The zip URI scheme follows the http://www.iana.org/assignments/uri-

schemes/prov/jar syntax. 

• The 7zip adaptor handles the rpk URI scheme and returns a stream of the rule package entry 

denoted by the URI. The rpk URI scheme follows the http://www.iana.org/assignments/uri-

schemes/prov/jar syntax. 

• The memory adaptor handles the memory URI scheme and returns a memory block denoted by 

the URI as a stream. The scheme syntax is as follows: memory://<address>/<size>.<ext> 

whereas <address> is a hexadecimal number (without prefix) denoting a 64-bit address in the 

address space of the current process, <size> is the number of bytes referenced by this URI 

starting from <address>, and <ext> is the file extension used for decoder lookup. 

As a 3rd party developer you can extend the procedural runtime with your own adaptors to handle 

specific schemes such as database access or a proprietary asset repository on a network server. 

  

Figure 6 - Procedural runtime resource access. A symbolic name ("sphere.obj") is translated to an URI with the help of the 
resolve map. The URI scheme is then used to find adaptors which create a stream for further processing by decoders. 

Codecs 
Codecs are the second extension option of the procedural runtime for 3rd party developers besides the 

adaptors. Codecs translate between an external representation (e.g. a 3D file) and an internal data 

structure (e.g. a prtx::Geometry) for a given content type. There are two kinds of codec: decoders 

which read assets from external representations (e.g. the JPGDecoder or the OBJDecoder) and encoders 

which transform internal representations such as the shape tree to an external representation (e.g. the 

FBXEncoder). Encoders are used to export procedural 3D models from CityEngine. Codecs can also 

convert between different in-memory representations, bypassing any serialization / deserialization 

which may be more time efficient e.g. in a game engine or a DCC application. The following content 

types are currently defined for codecs: 

http://tools.ietf.org/html/rfc1738
http://www.iana.org/assignments/uri-schemes/prov/jar
http://www.iana.org/assignments/uri-schemes/prov/jar
http://www.iana.org/assignments/uri-schemes/prov/jar
http://www.iana.org/assignments/uri-schemes/prov/jar
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• CT_GEOMETRY: A geometry codec operates on prtx::Geometry objects. Currently Multipatch, 

Collada, OBJ, FBX, glTF, DWG, IFC  and USD decoders are supplied as well as Multipatch, Collada, 

OBJ, FBX, VOB, glTF, DWG, IFC, Alembic, SLPK, Datasmith and USD encoders. 

• CT_MATERIAL: A material codec operates on prtx::Material objects. Currently decoders and 

encoders for both the MTL and .cgamat format are supplied. 

• CT_TEXTURE: A texture codec operates on prtx::Texture objects. The texture codecs are based 

on GDAL (www.gdal.org) and decoders are supplied for all GDAL raster formats. In addition to 

that, PNG and JPEG encoders are supplied also based on GDAL. 

• CT_SHADER: Shader definition. Currently only the built-in CityEngine shader definition is allowed 

and no custom implementation is possible. 

• CT_CGB: There is a built-in decoder for CGB files which have the same format as Java class files. 

• CT_CGAERROR: There is a built-in encoder for CGA runtime error messages which forwards to the 

callback interface cgaError() member function. 

• CT_CGAPRINT: There is a built-in encoder for the CGA print() operation and function which 

forwards to the callback interface cgaPrint() member function. 

• CT_CGAREPORT: There is a built-in encoder for the CGA report() operation which forwards to 

the callback interface cgaReportBool(), cgaReportFloat(), and cgaReportString() member 

functions. 

• CT_ATTRIBUTE: There is a built-in encoder for attribute evaluation which forwards to the 

callback interface attrBool(), attrFloat(), and attrString() member functions. 

• CT_SHAPETREE: CityEngine uses a dedicated encoder for encoding the shape tree structure. 

Shape trees can be cached for advanced use cases. See the encoder documentation for more 

details. 

• CT_STRING: Generic string, used for text files (see the CGA readTextFile() function). 

• CT_TABLE: Basic table, see CGA readStringTable() and readFloatTable() functions. 

Client Callbacks 
The main focus of the procedural runtime is shape processing. All functionality not related to this is 

either handled by subsystems such as adaptors and codecs or delegated to client callbacks. The client 

callback plays a central role in the communication between the generation process and the client 

application. The following functionality must be provided by the client callback: 

• The client callback consumes encoder output. It is the responsibility of the client callback to 

write data received from an encoder to a file or other data sink and ensure consistency and 

locking. Data received from the runtime only remains valid during the execution of the specific 

callback function. If data has to be preserved for later use, the callback must copy the data. 

• The client callbacks handles CGA features that directly produce output such as print(), 

report(), attribute evaluation, and error messages. 

• The client callbacks translate between the world coordinate system used internally during the 

generation and various external representations such as WGS84. 

• The client callback handles progress reporting and controls continuation of the generation 

process. For example user cancellation of the generation process can be implemented by the 

client application through the progress and continuation callback. 

http://www.gdal.org/
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The following two callback implementations are currently provided and may be extended if needed by a 

specific client application: 

• The prt::FileOutputCallbacks implementation redirects output to the file system. 

• The prt::MemoryOutputCallbacks implementation redirects output to in-memory blocks. 

Client-Side Caching 
Although the procedural runtime is stateless, state can be preserved between multiple calls on the client 

side if desired. This can speedup resource access considerably if e.g. geometry assets do not have to be 

decoded over and over again. Because no single cache policy can fit all client application needs, a client 

application can provide its own cache implementation. For example, CityEngine provides a cache 

implementation that optimizes resource usage across the whole application among multiple 

subsystems. 

The data backend, which resolves an URI (e.g. file:/P:/lib/assets/sphere.obj) to a content object 

(e.g. prtx::Geometry), uses the cache interface to access data associated with an URI. There are two 

main types of cache entries: 

• Persistent data blocks: these are typed, serializable blocks of memory that may be persisted by 

the application. This is typically raw, decoded pixel-data or texture meta-data. 

• Transient:  these are typed, non-serializable, internal objects (e.g. prtx::Geometry, or 

prtx::Texture). Some transient resources are an aggregation of persistent data blocks. This 

allows for redundancy detection at the persistent data block level and prefetching of data blocks 

into the cache from a persistent source. CityEngine for examples stores persistent cache blocks 

in the “.prtcache” directory in the platform’s temporary folder. 

Please see the cache API documentation and examples for further details regarding the cache protocol. 

The following cache implementations are currently provided by the procedural runtime and can be 

created by calling prt::CacheObject::create(): 

CACHE_TYPE_DEFAULT: The default implementation that uses a simple in-memory cache which simply 

grows if not flushed. 

CACHE_TYPE_NONREDUNDANT: The non-redundant implementation uses an in-memory cache which simply 

grows if not flushed but detects and unifies duplicate persistent blocks, effectively avoiding data 

redundancy in the cache. 

Logging 
The procedural runtime provides an extensible logging interface which is usually configured before the 

initialization of the runtime. The following log levels are defined: 

• LOG_TRACE: Internal call tracing. This log level is disabled in release builds of the runtime. 

• LOG_DEBUG: Verbose debug information. 

• LOG_INFO: Informational messages such as configuration information during initialization. 

• LOG_WARNING: Warning messages issued at a condition that did not abort an ongoing execution. 

• LOG_ERROR: Error messages issued at a condition that altered/aborted the ongoing execution. 

• LOG_FATAL: Fatal errors that leave the procedural runtime in an inconsistent /non-operational 

state. 
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Clients can issue log messages by invoking prt::log() with the appropriate log level and message 

which will be processed by the logging facility the same way as procedural runtime internal messages. 

Log messages are silently discarded by default and have to be explicitly intercepted by one or more log 

handlers in order to be processed. The following log handlers are provided: 

• prt::ConsoleLogHandler: Writes log messages to stdout. 

• prt::FileLogHandler: Write log messages to a text file. 

Client applications can implement their own subclasses of prt::LogHandler for their specific logging 

needs. CityEngine for example has a log handler that writes log messages to CityEngine’s log window. 
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Design Principles 
The procedural runtime is based on a couple of design principles that are also reflected in the API and 

the architecture. The following sub sections outline these principles and implications. 

Modularity 
Since the procedural runtime targets a broad range of use cases, it has a modular design enabling fine-

tuning for a specific environment. Currently the procedural runtime can be customized with the 

following 3rd party implementations: 

• Callback interface: Output handling is entirely delegated to the PRT callback interface. 

• Logging: Clients can add their own log handlers to the runtime logging facility. 

• Encoders: Writer for custom file formats or in-memory data structures can be implemented by 

writing PRTX encoders.  

• Decoders: Reader for custom file format can be implemented by writing PRTX decoders. 

• Adaptors: Custom resource access can be implemented by writing PRTX adaptors. 

• Resolve Map Provider: Lists embedded secondary resources used by a PRTX decoder. 

• Caching: Persistent caches or specific cache policies can be implemented through the PRT cache 

protocol. 

Memory Management 
• All PRT objects which are created through the API inherit from prt::Object and must be disposed 

by calling the destroy() member function. This ensures that object are allocated and freed by the 

same C-runtime and make the client implementation independent of the PRT C-runtime version. 

It is the responsibility of the client to destroy objects that it has created.  

• PRTX utilizes shared pointers whenever possible. Therefore procedural runtime extensions 

generally do not need to care about freeing memory and pointer ownership. 

Data Types 
• In order to minimize locks, most PRT objects are immutable. Usually builders are used to create 

PRT objects (e.g. prt::InitialShapeBuilder). Builders are not thread safe and it is the 

responsibility of the client that a particular builder instance is not used by multiple threads. 

• The procedural runtime is stateless. The client can freely destroy PRT objects after calls to the 

API. 

• Double precision floating point numbers: the PRT API and PRTX interfaces use only double 

precision floating point numbers.  

• Although the API is unit-less, the procedural runtime implicitly assumes that values and 

coordinates are in meters and Cartesian where appropriate. It is the client responsibility to 

convert values and project coordinates if it is using a non-metric or non-Cartesian systems. 

• Wide strings: the PRT API and PRTX use wchar_t* and std::wstring respectively to avoid 

character encoding ambiguities (essentially using UTF-16 with the Basic Multilingual Plane) 

whenever possible. In cases where 8-bit character are required (e.g. prt::Object.toXML()), 

UTF-8 is the standard encoding. The only exception are subclasses of 

prt::SimpleOutputCallbacks which must be able to encode wide strings with the current 

platform encoding (NATIVE), UTF-8 (UTF8) and UTF-16 (UTF16). 
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• PRT objects can be converted to an XML representation with prt::Object.toXML() which 

simplifies and homogenizes debugging, logging, and serialization. 

Multi-Threading 
The procedural runtime is designed and implemented with today’s multicore processors in mind. It 

supports coarse-grained parallelism through its thread-safe API. The implementation minimizes global 

locks, and parallel invocations of the PRT API typically progress concurrently. The SPU implementation 

may use fine-grained parallelism when appropriate. 

Despite the procedural runtime’s multi-threaded implementation, PRT API clients as well as PRTX codecs 

and adaptors can ignore concurrency most of the time: 

• PRT API calls can be issued from any thread, just use your application’s threading model. 

• PRTX codecs are created and used on a single thread. No synchronization is necessary by the 

codec implementation unless global data must be shared between codecs. 

• PRTX adaptors are created and used on a single thread. No synchronization is necessary by the 

adaptor implementation unless global data must be shared between adaptors. 

• The procedural runtime accesses resources in a read-only manner through adaptors. All low-

level write operations (e.g. exporting to a specific 3D file format) are delegated to the client 

callbacks. This avoids implementation of file locks or complex transaction behaviors as part of 

the procedural runtime. 

Nevertheless, some calls are made concurrently by the procedural runtime and synchronization, locking, 

or transactions have to be implemented by the client for correctness. 

• Callback implementations may be called from multiple threads in parallel. All callback member 

functions must be synchronized. 

• Cache implementations may be called from multiple threads in parallel. All cache member 

functions must be synchronized. 

• Log implementations may be called from multiple threads in parallel. All log member functions 

must be synchronized. 

Error Handling 
Because of the limited C++ usage for the PRT API, all PRT API calls return a status value 

(prt::STATUS_xxx) to indicate success or abnormal conditions and never throw exceptions. However, 

PRTX uses C++ exceptions extensively and PRTX 3rd party code can throw exceptions if appropriate. Error 

and warning conditions are usually also reported by corresponding messages through the logging 

interface. PRT objects implement a toXML() member function which allows easy printing and parsing of 

PRT data structures. 

Internationalization 
While great attention has been paid for supporting a wide range of localized environments (UTF-16, URI 

percent encoding, use of XML) the procedural runtime itself is English only. Since most of the runtime 

data has symbolic names anyway, mapping them to localized user interface strings should be straight 

forward in a client application. Only log messages are hard-coded in English and cannot be localized in 

the current version. 
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Using the Procedural Runtime API 
This section highlights important parts of the PRT API which you will likely use from a client application. 

The PRT API lets you generate 3D models with the supplied adaptors and codecs. For example the 

ArcGIS Desktop geoprocessing tools use the memory adaptor, the Multipatch codec as well as the 

memory output callbacks as-is to implement in-memory 3D model generation using simply the PRT API.  

The code samples below do not form a working example so please check the CityEngine SDK for 

complete, ready-to-customize code. All error handling as well as memory management has been 

omitted to keep the code samples small. In an actual application scenario it is highly recommended to 

check the status values, and prt::Objects that are created must be destroyed to avoid memory leaks.  

Initialization and Shutdown 
Before using any functionality of the procedural runtime it has to be initialized. During initialization, the 

runtime allocates internal data structures and dynamically loads codecs and adaptors from shared 

libraries. The only exception is the logging framework which accepts log handlers before initializations. 

Most client application register a log handler as a first step so they can also intercept runtime log 

messages during initialization. As stated above, error and memory handling has to be done on the client 

side. Calling destroy() is particularly important for the library handle returned by the prt::init() call. 

A typical initialization (and shutdown) sequence may look as follows: 

Setup console logging: 

prt::ConsoleLogHandler* logHandler 

= prt::ConsoleLogHandler::create(prt::LogHandler::ALL, prt::LogHandler::ALL_COUNT); 

prt::addLogHandler(logHandler); 

Prepare the procedural runtime extension library path (codecs and adaptors):  

const wchar_t* extensionPath = L”C:\\dev\\ce_sdk\\lib”; // ce_sdk = CityEngine SDK 

 

Initialize the procedural runtime: 

const prt::Object* libraryHandle = prt::init(&extensionPath, 1, prt::LOG_INFO); 

 

Release the library handle at application termination: 

void shutdown() { 

  libraryHandle->destroy(); 

 

  prt::removeLogHandler(logHandler); 

  logHandler->destroy(); 

} 

 

... 

atexit(shutdown); 

... 

 

Resolve Map, Callbacks, and Cache 
The procedural runtime centers around procedural 3D model generation and any auxiliary functionality 

is delegated to extensions or the client. Thus the client has to provide data and implementations that fit 

its needs. Several default implementations are provided for 3rd party developers as part of the SDK and 

can be directly created by the client or extended as sub-classes.  
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• The resolve map allows the data backend to translate symbolic names in CGA files to URIs for 

locating resources and is usually created from a RPK URI.  

• The callbacks is the key interface through which generation results are communicated back to 

the client. Usually encoders send data to the client through write() calls. But application may 

use a dedicated pair of callbacks and encoder to optimize data transfer (e.g. by passing memory 

references instead of serialized geometry data) between the encoder and the client.  

• The cache allows a client to carry data from one invocation of prt::generate() to the next 

which can speed-up the generation process considerably because assets are stored in an 

optimized internal format in the cache for reuse. 

Create the resolve map for an RPK: 

const prt::ResolveMap* resolveMap = prt::createResolveMap(L"rpk:file:/P:/lib/sample.rpk"); 

Create callbacks which writes to the file system: 

prt::FileOutputCallbacks* callbacks = prt::FileOutputCallbacks::create(L"P:\\models"); 

 

Create a default cache: 

prt::Cache* cache = prt::CacheObject::create(prt::CacheObject::CACHE_TYPE_DEFAULT); 

 

Rule File Information 
The procedural runtime defines several concepts and formats which a client must be able to create and 

query. Although the runtime uses well documented standard formats (such as 7zip archives or Java class 

files) where possible, a client should not need to re-implement parsing of these formats. Therefore a 

few PRT utility functions allow convenient access to that information.  

A resolve map is a simple key-value map which can be iterated and queried by the client. Because a 

resolve map can be created from an RPK URI, this enables easy introspection of the RPK structure and 

content.  

Similarly, information about a rule file can be obtained for a given CGB URI. The prt::RuleFileInfo 

exposes the internal structure and data related to the source CGA file such as attributes, rules, and 

annotations. The information in the rule file info is sufficient for a client to dynamically configure the 

attributes of an initial shape. For example the inspector of CityEngine builds its user interface entirely 

from the rule file info (see Figure 7). 

Find CGB file in resolve map: 

const wchar_t* cgbKey = resolveMap->findCGBKey(); 

const wchar_t* cgbURI = resolveMap->getString(cgbKey); 

 

 

Find start rule in CGB file by iterating through the rule file info: 

const prt::RuleFileInfo::Entry* startRule = nullptr; 

const prt::RuleFileInfo* const  info      = prt::createRuleFileInfo(cgbURI); 

for(size_t ri = 0; ri < info->getNumRules(); ri++) { 

   const prt::RuleFileInfo::Entry* const rule = info->getRule(ri); 

   if(rule->getNumParameters() > 0) continue; 

   for(size_t ai = 0; ai < rule->getNumAnnotations(); ai++) { 

      if(wcscmp(rule->getAnnotation(ai)->getName(), L"@StartRule") == 0) { 

         startRule = rule; 

         break; 
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      } 

   } 

   if(startRule != nullptr) break; 

} 

 

 

 

 

Figure 7- Inspector user interface dynamically created by CityEngine based on rule file info. 

Initial Shape 
The initial shape is the starting point for every generation process. Several attributes are mandatory and 

must be set before a generation can successfully take place. These are the URI of the CGB file, the name 

of the start rule (which becomes the shape symbol), the random seed, a (probably empty) map of CGA 

attributes, and a resolve map for resource lookup. In addition to that, a geometry has to be set which 

becomes the geometry attribute of the initial shape. The geometry is specified in a Y-up right-handed 

coordinate system and the unit is assumed to be meters (see “Shape” on page 6) by invoking: 

prt::InitialShapeBuilder::setGeometry(double const* vertexCoords,                       

size_t vcCount, uint32_t const* indices, size_t indicesCount, uint32_t const* faceCounts, size_t 

faceCountsCount, const uint32_t* holes, size_t holesCount); 

 

• vertexCoords : The vertex coordinates as (x,y,z) tuples: { x0, y0, z0, x1, y1, z1, ... }. 

• vcCount: The number of vertices in vertexCoords. The size of vertexCoords is 3 * vcCount. 

• Indices: The vertex indices per face: {f0i0, f0i1, f0i2, f0if0Count-1, ..., f1i0, ...} 

• indicesCount: The size of indices. 

• faceCounts: The number of vertices per face: { f0Count, f1Count, ...} 

• faceCountsCount: The number of faces. 
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• holes: List which assigns hole-faces to faces. Holes must have the opposite vertex-ordering as 

the encircling face. 

• holesCount: The number of entries in holes. 

 

The operations of the start rule will be applied to that geometry as a first step in the generation process 

and typically create successor shapes which result in the shape tree. 

Initial shape attributes are matched by name and type against attribute definitions in the CGB file and 

the generation will use the values from the CGA attribute map if they match. Typical examples of initial 

shape attributes for a building are e.g. numberOfFloors, roofType, or LOD. 

A simple quad geometry: 

static const double  Quad_vertices[]   = {0, 0, 0, 0, 0, 30, 30, 0, 30, 30, 0, 0}; 

static const uint32_t Quad_indices[]    = {0, 1, 2, 3}; 

static const uint32_t Quad_faceCounts[] = {4}; 

 

Create builders and set initial shape attributes: 

prt::AttributeMapBuilder* amb = prt::AttributeMapBuilder::create(); 

amb->setFloat(L"numberOfFloors", 12); 

 

prt::InitialShapeBuilder* isb = prt::InitialShapeBuilder::create(); 

isb->setAttributes( 

cgbURI,  

startRule->getName(),  

0,  

L"Quad",  

amb->createAttributeMapAndReset(),  

resolveMap); 

 

Set initial shape geometry: 

isb->setGeometry(Quad_vertices, 12, Quad_indices, 4, Quad_faceCounts, 1); 

 

Create initial shape from builder: 

const prt::InitialShape* shape = isb->createInitialShapeAndReset(); 

Generating 3D models 
Having all data ready, generating a 3D model mainly becomes choosing a set of encoders and setting 

their options. A client can query the procedural runtime by invoking prt::createEncoderInfo() or you 

as a developer can have a look at the encoder documentation for available options of the supplied 

encoders. Encoder options are simple key-value maps and have to be validated before they can be 

passed to prt::generate(). Since encoders may cover a wide range of use cases, not all combinations 

of options are valid. The validation step ensures that only non-conflicting options are passed to 

prt::generate().  The prt::EncoderInfo.createValidatedOptionsAndStates() member function 

is free to change any option in order to create a valid configuration.  

For every encoder option there is an associate xxx_state key that maps to one of the following string 

values: 

• "ENABLED": The corresponding option can be configured as part of this configuration. 
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• "DISABLED": The corresponding option cannot be configured as part of this configuration and 
should not be changed. 

• "HIDDEN": The corresponding option is ignored as part of this configuration. 
 

Although a client may find out more about the validation and option configuration by looking at the 

option state, its main purpose is supporting the dynamic generation and updating of a user interface for 

an encoder. For example CityEngine queries the encoder for its options and creates corresponding user 

interface elements. The visibility and enable/disable state of these user interface elements is directly 

controlled by corresponding state values (see Figure 8). 

Even though the internal execution of prt::generate() may use multiple threads, the call itself is 

synchronous and all results are guaranteed to be passed to the callbacks before the call returns. The 

client is free to destroy all created PRT objects after prt::generate().  

Because prt::generate() tends to be expensive in term of CPU time, usually multiple encoders are 

passed to prt::generate() and run at the same time. If your application has multiple encoders which 

have to run together (e.g. writing transformation node information to one file together and the 

geometry to another file) it is also easier to pass multiple encoders than combining output of multiple 

prt::generate() calls as a post-processing step. The list of encoder of a typical invocation of 

prt::generate() include com.esri.prt.core.CGAPrintEncoder, 

com.esri.prt.core.CGAErrorEncoder, optionally the com.esri.prt.core.CGAReportEncoder if you 

need access to CGA reports, and content specific encoders. If some output is not required, it is more 

efficient to omit the corresponding encoder in the prt::generate() call than discarding the output in 

the callbacks. Even though the shape tree is only generated once for all encoders, every encoder iterates 

the shape tree individually and may cause considerable overhead for large shape trees. 

Before calling generate you may setup occluders. See the documentation of 

prt::generateOccluders() and the CGA reference for occlusion queries for a detailed discussion of 

occlusion and the generation process. 

Get encoder info: 

const wchar_t*           encoder    = L"com.esri.prt.codecs.OBJEncoder"; 

const prt::EncoderInfo*  encInfo    = prt::createEncoderInfo(encoder); 

const prt::AttributeMap* encOptions = 0; 

 

Create encoder options: 

encInfo->createValidatedOptionsAndStates(0, &encOptions);  

 

Trigger procedural 3D model generation: 

prt::generate(&shape, 1, 0, &encoder, 1, &encOptions, callbacks, cache, 0); 
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Figure 8- Export user interface dynamically created by CityEngine based on validated encoder options. 
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Writing Procedural Runtime Extensions 
While the PRT API allows you as a 3rd party developer to work with rule packages and procedurally 

generate 3D models, you are limited to the SDK adaptors and codecs. To get past the PRT API you have 

to build a shared library and extend PRTX classes with custom code. This section outlines the 

implementation requirements for adaptors and codecs. Please note that all your classes and functions 

discussed here must be visible in the shared library and you have to export these symbols with 

__declspec(dllexport) on Windows and with __attribute__(visibility("default")) on Linux 

and are omitted in the code samples below for simplicity. The SDK includes complete examples of 

extensions which are recommended as a starting point for writing your own extension. 

Extension Life Cycle 
All procedural runtime extensions follow the same, managed life cycle. Extensions have to register 

factories which are used by the runtime to create adaptor and codec instances during PRT API calls. For 

every resource access or codec operation a new instance from the corresponding factory is requested. 

While there may be many instances of the same type in use at a given point in time, member functions 

on extensions are guaranteed to be invoked on a single thread only and therefore no synchronization is 

necessary (see “Multi-Threading” on page 16). Extensions should not allocate or use any global data 

because this would violate the stateless design principle (see “Memory Management” on page 15). 

Codecs have access to a cache instance for preserving state over multiple invocations although state is 

typically managed by the data backend for you. 

In order to be loaded and initialized by the runtime during the prt::init() call, extension libraries 

must at least export the following functions: 

extern "C" { 

  void registerExtensionFactories(prtx::ExtensionManager* manager) { 

    manager->addFactory(new MyFactory()); 

    ... 

  } 

 

  void unregisterExtensionFactories(prtx::ExtensionManager* manager) {} 

  int getVersionMajor() {return 1;} 

  int getVersionMinor() {return 0;} 

} 

 

The getVersionMajor() and getVersionMinor() functions state the runtime version this extension 

can work with. If the version constraint is satisfied, the runtime calls registerExtensionFactories() 

during initialization which allows an extension to register all its adaptor and codec factories with the 

runtime’s extension manager.   

Factories 
For each extension type there is a factory base class available in in the PRTX interface which you have to 

subclass as a 3rd party developer in order to provide custom functionality: 

• prtx::AdaptorFactory: An adaptor factory which creates prtx::Adaptor instances. 

Implement a subclass if you want to add your own adaptor. 

• prtx::DecoderFactory: An adaptor factory which create prtx::Decoder instances. Implement 

a subclass if you want to add your own decoder. 

• prtx::EncoderFactory: An adaptor factory which create prtx::Encoder instances. Implement 

a subclass if you want to add your own encoder. 
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Factory implementations have to provide at least a unique ID, a name, and a description. It is 

recommended to use a reverse-domain scheme (e.g. “esri.com” becomes “com.esri.xxx”) for the ID in 

order to avoid ID conflicts among different 3rd party implementations. Depending on the factory type, 

more information is required such as icons in the case of encoder factories. If multiple factories can 

handle a specific request, prtx::Extension.getMerit() is called for disambiguation. Higher merits are 

preferred over lower merits thus 3rd party extensions may override the supplied implementations by 

returning a high merit. Merits < 10.0 are reserved and the supplied extensions have a default merit of 

1.0. Please see the extension specific class documentation for details regarding factory implementation. 

Adaptors 
Most adaptors will subclass prtx::StreamAdaptor which create a std::istream instance for a given 

URI. If the adaptor is able to handle structured content (e.g. for an archive file or a database) the 

prtx::Adaptor.createResolveMap() member function should be implemented as well. The following 

example shows a simple adaptor for file URIs: 

std::istream* FileSystemAdaptor::createStream(prtx::URIPtr uri, const prt::ContentType& ct) { 

  if (uri->getScheme() == prtx::URIUtils::SCHEME_FILE) { 

    const boost::filesystem::path p(uri->getPath()); 

    if (!boost::filesystem::exists(p)) 

      throw std::invalid_argument("file system path does not exist:" + p.string()); 

    return new boost::filesystem::ifstream(p, std::ifstream::in | std::ifstream::binary); 

  } else { 

    log_werror(L"FileSystemAdaptor::createStream():unable to handle URI='%s'")%uri->wstring(); 

    throw prtx::StatusException(prt::STATUS_INVALID_URI); 

  } 

} 

 

void FileSystemAdaptor::destroyStream(std::istream* stream) { 

  delete stream; 

} 

 

prt::ResolveMap* FileSystemAdaptor::createResolveMap(prtx::URIPtr) const { 

  throw util::RuntimeErrorST("FileSystemAdaptor::createResolveMap() is not implemented."); 

} 

Decoder 
Decoders are constructed by the corresponding decoder factory which also supplies the decoder info. A 

PRT client can query that information by calling prt::getDecoderInfo(). A decoders is a codec 

implementation which converts a std::istream to a PRTX content object such as prtx::Geomtry or 

prtx::Texture. The PRTX interface provides the following base classes which a 3rd party extension 

writer can subclass: 

• prtx::GeometryDecoder: Create a prtx::Geometry object from a given stream. 

• prtx::MaterialDecoder: Create a prtx::Material object from a given stream. 

• prtx::TextureDecoder: Create a prtx::Texture object from a given stream. 

Decoders tend to be more complex than adaptors because they have to deal with complex data types 
such as geometry or material. Decoders are typically not written from scratch but use existing libraries 
for the main part of their work. For example the supplied texture decoders are based on GDAL and are 
just a small wrapper around GDAL functions.  
The decoder’s work has to be performed in the decode(ContentPtrVectorVariant& results, 
std::istream& stream, prt::ICache* cache, const std::wstring& key, prtx::ResolveMap 

const* resolveMap, std::wstring& warnings) member function. While typically only a single 
object is constructed by a decoder, some formats may translate to multiple instances (e.g. material files 
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with multiple material definitions or geometry with multiple level of detail) and thus a decoder fills the 
results vector instead of simply returning an instance. A key and a resolve map is also provided for 
cache lookups, or if a decoder needs access to URI specific components (e.g. the query part of an URI).  
Because a prtx::Texture and prtx::Material are attributable objects they supports optional 
metadata such as a spatial reference for textures. Please see the PRTX documentation for predefined 
metadata keys. 

Resolve Map Providers 
Some formats (e.g. geometry formats such as FBX, glTF, USD) use embedding of related assets (e.g. 

textures for FBX geometry). For such formats, Resolve Map Providers are used to list all secondary assets 

inside a file. Typically, a Resolve Map Provider works in tandem with an Adaptor. The Resolve Map 

Provider links all embedded assets to a URI that has the custom Adaptor’s URI scheme as outer most 

scheme. The related decoder must be aware how the keys are constructed for these embedded assets 

to resolve them. 

Encoder 
Encoders are constructed by the corresponding factory which also supplies the encoder info. A PRT 

client can query that information by calling prt::getEncoderInfo(). The encoder info is crucial for 

implementing a generic client that can dynamically build for example a user interface without having 

prior (compile-time) information about an encoder.  

Encoders transform the shape tree into a final 3D model or extract shape tree information (see “Shape 

Tree” on page 7). Like decoders, encoders are typically based on existing libraries and act as a wrapper 

around these library calls. For example the com.esri.prt.codecs.VOBEncoder is based on the closed-

source VOB libraries provided by e-on software. Currently there are two base classes defined for 

geometry and texture: 

• prtx::GeometryEncoder: Encode a 3D model through the callbacks interface based on shape 

tree information. 

• prtx::TextureEncoder: Encode a 2D raster image through the callbacks interface based on 

prtx::Texture. 

Usually encoders use the client callbacks write() member function to send data to the client. Such 

encoders are generic in the sense that all client implementations that use a subclass of 

prt::SimpleOutputCallbacks are able to process the encoder output. CityEngine for example is able 

to dynamically create a user interface for such an encoder and write the output to files. But some 

encoders may only work with a specific callbacks implementation and pass data by reference instead of 

serializing it via write() calls. CityEngine for example uses a render encoder that creates OpenGL data 

structures in memory that are passed as opaque handles back via an extended callbacks interface known 

to both the encoder and the client. The renderer uses these handles for rendering, unaware of the 

underlying geometry and material data on the GPU. 

Encoder Life Cycle 
Encoders are created as part of the generation process when the runtime is preparing the output. 

Before calling prt::generate(), the client usually prepares validated encoder options by calling 

prt::EncoderInfo.createValidatedOptionsAndStates(). Hence there is a close relationship 
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between the encoder info returned from the encoder factory and the actual encoder implementation. 

The actual encoding goes through the following steps: 

1. After creation, prtx::Encoder.init() is called once with the current prtx::GenerateContext 

where an encoder can allocate data structures for subsequent prtx::Encoder.encode() calls.  

2. Initial shapes are filtered by prtx::Encoder.validate(). This member function is invoked for 

every initial shape passed to prt::generate(). 

3. For every initial shape that passed the prtx::Encoder.validate() filter, 

prtx::Encoder.encode() is called where the actual encoding takes place. Encoders may 

aggregate and collect information in data structures allocated during prtx::Encoder.init(). 

Please note that prtx::Encoder.encode() may also be called as part of a nested encoding. For 

example an encoder for a 3D file format may call a texture encoder during its execution. 

4. After all initial shapes are processed, prtx::Encoder.finish() is called which allows the 

encoder to finish up and free resources allocated during prtx::Encoder.init(). Some encoder 

may defer part of their work to prtx::Encoder.finish() and only collect data during the 

prtx::Encoder.encode() calls. For example most of the supplied geometry encoders allow 

optional sorting by material which can only take place after all shape tree data from all initial 

shapes has been processed. 

Encoder Utilities 
Some encoding tasks are very generic and the PRTX interface provides a set of utility functions that 

relieve encoder writers from re-implementing this functionality. Please see the PRTX utility 

documentation for a detailed description. Here only the prtx::EncodePreparator and 

prtx::NamePreparator bear mentioning. The name preparator helps organizing name spaces according 

to specific rules e.g. for unique material and file names. The encode preparator handles most of the 

burden of combining and optimizing shape geometries into a final 3D model. 

Check callbacks type, allocate and initialize members and utility objects: 

void MyEncoder::init(prtx::IGenerateContext& context) { 

  prt::SimpleOutputCallbacks* callbacks = 

dynamic_cast<prt::SimpleOutputCallbacks*>(getCallbacks()); 

  if(callbacks == 0) 

    throw prtx::StatusException(prt::STATUS_ILLEGAL_CALLBACK_OBJECT); 

 

  mNamePreparator             = new MyNamePrepartor(); 

  mNamespaceMaterials         = mNamePreparator.newNamespace(); 

  mNamespaceMeshes            = mNamePreparator.newNamespace(); 

  mNamespaceDocumentFilenames = mNamePreparator.newNamespace(); 

 

mPreparator = prtx::EncodePreparator::create(true, mNamePreparator, mNamespaceMeshes, 

mNamespaceMaterials); 

} 

Collect leaf shapes, extract combined geometry according to flags from encode preparator, and write 

them to callbacks. Please see the prtx::EncodePreparator::PreparationFlags for a detailed 

description: 

void MyEncoder::encode(prtx::IGenerateContext& context, size_t initialShapeIndex) { 

  const prtx::InitialShape& is = *context.getInitialShape(initialShapeIndex); 

 

  try { 

    prtx::LeafIteratorPtr li = prtx::LeafIterator::create(context, initialShapeIndex); 

    for(prtx::IShapePtr shape = li->getNext(); shape.get() != 0; shape = li->getNext()) 

      mPreparator->add(context.getCache(), shape, is.getAttributeMap()); 
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  } catch(...) { 

    log_wtrace(L"MyEncoder::encode: error"); 

  } 

 

  util::computeLocalOffset(&context, initialShapeIndex, mLocalOffsetMode, mPreparator, 

mLocalOffset); 

 

  std::vector<prtx::EncodePreparator::FinalizedInstance> finalizedInstances; 

  mPreparator->fetchFinalizedInstances(finalizedInstances, 

               prtx::EncodePreparator::PreparationFlags() 

.instancing(false) 

   .mergeByMaterial(true) 

   .triangulate(true) 

   .mergeVertices(true) 

   .cleanupVertexNormals(true) 

   .cleanupUVs(true) 

   .vertexNormalAction(VertexNormalProcessor::PASS) 

   .holeAction(HoleProcessor::PASS) 

   .indexSharing(INDICES_SEPARATE_FOR_ALL_VERTEX_ATTRIBUTES) 

   .mergeToleranceVertices(1e-3) 

   .mergeToleranceNormals(1e-3) 

   .mergeToleranceUVs(1e-3) 

   .offset()); 

 

  prt::SimpleOutputCallbacks* callbacks =  

    dynamic_cast<prt::SimpleOutputCallbacks*>(getCallbacks()); 

 

  const std::wstring name = util::getFilename(mBaseName, EXT.c_str(), mFileGranularity, 

    mFileIndex, initialShapeName, mNamePreparator, mNamespaceDocumentFilenames); 

 

  write3DModel(context, finalizedInstances, name, callbacks); 

} 

Write combined materials and cleanup: 

void MyEncoder::finish(prtx::IGenerateContext& context) { 

  prt::SimpleOutputCallbacks* callbacks =  

    dynamic_cast<prt::SimpleOutputCallbacks*>(getCallbacks()); 

 

  writeMaterials(context, callbacks); 

 

  delete mNamePreparator; 

} 
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Conclusion 
This document gives an overview of the ArcGIS procedural runtime. Please check the SDK examples and 

the SDK documentation for more detailed descriptions of classes and member functions. Other concepts 

such as occlusion have to be seen in the context of CGA thus the CGA online help is also a valuable 

source of information. 

The goal of the CityEngine SDK is to give to you as a 3rd party developer a powerful procedural modeling 

toolkit in the most convenient way. Do not hesitate to contact Esri if you have specific needs, comments, 

or feedback regarding the procedural runtime and we will evolve the product accordingly.  
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