arcgis.features module¶
The arcgis.features module contains types and functions for working with features and feature layers in the GIS.
Entities located in space with a geometrical representation (such as points, lines or polygons) and a set of properties can be represented as features. The arcgis.features module is used for working with feature data, feature layers and collections of feature layers in the GIS. It also contains the spatial analysis functions which operate against feature data.
In the GIS, entities located in space with a set of properties can be represented as features. Features are stored as feature classes, which represent a set of features located using a single spatial type (point, line, polygon) and a common set of properties. This is the geographic extension of the classic tabular or relational representation for entities - a set of entities is modelled as rows in a table. Tables represent entity classes with uniform properties. In addition to working with entities with location as features, the system can also work with non-spatial entities as rows in tables. The system can also model relationships between entities using properties which act as primary and foreign keys. A collection of feature classes and tables, with the associated relationships among the entities, is a feature layer collection. FeatureLayerCollections are one of the dataset types contained in a Datastore. Finally, features are not simply entities in a dataset. Features have a visual representation and user experience - on a map, in a 3D scene, as entities with a property sheet or popups.
arcgis.features.Feature¶
-
class
arcgis.features.
Feature
(geometry=None, attributes=None)¶ Entities located in space with a set of properties can be represented as features.
# Obtain a feature from a feature layer: feat_set = feature_layer.query(where="OBJECTID=1") feat = feat_set[0]
-
property
as_dict
¶ - Returns
the feature as a dictionary
-
property
as_row
¶ - Returns
the feature as a tuple containing two lists:
List of:
Description
row values
the specific attribute values and geometry for this feature
field names
the name for each attribute field
-
property
attributes
¶ - Returns
a dictionary of feature attribute values with field names as the key
-
property
fields
¶ - Returns
attribute field names for the feature as a list of strings
-
classmethod
from_dict
(feature)¶ - Returns
a feature from a dict
-
classmethod
from_json
(json_str)¶ - Returns
a feature from a JSON string
-
property
geometry
¶ - Returns
the feature geometry
-
property
geometry_type
¶ - Returns
the geometry type of the feature as a string
-
get_value
(field_name)¶ Retrieves the value for a specified field name
Argument
Description
field name
Required String. The name of the field to get the value for.feature.fields
will return a list of all field names.- Returns
value for the specified attribute field of the feature.
-
set_value
(field_name, value)¶ Sets an attribute value for a given field name
Argument
Description
field_name
Required String. The name of the field to update.
value
Required. Value to update the field with.
- Returns
boolean indicating whether field_name value was updated.
-
property
arcgis.features.FeatureLayer¶
-
class
arcgis.features.
FeatureLayer
(url, gis=None, container=None, dynamic_layer=None)¶ The feature layer is the primary concept for working with features in a GIS.
Users create, import, export, analyze, edit, and visualize features, i.e. entities in space as feature layers.
Feature layers can be added to and visualized using maps. They act as inputs to and outputs from feature analysis tools.
Feature layers are created by publishing feature data to a GIS, and are exposed as a broader resource (Item) in the GIS. Feature layer objects can be obtained through the layers attribute on feature layer Items in the GIS.
-
append
(item_id=None, upload_format='featureCollection', source_table_name=None, field_mappings=None, edits=None, source_info=None, upsert=True, skip_updates=False, use_globalids=False, update_geometry=True, append_fields=None, rollback=False, skip_inserts=None, upsert_matching_field=None)¶ Only available in ArcGIS Online
Update an existing hosted feature layer using append.
Argument
Description
source_table_name
optional string. Required only when the source data contains more than one tables, e.g., for file geodatabase. Example: source_table_name= “Building”
item_id
optional string. The ID for the Portal item that contains the source file. Used in conjunction with editsUploadFormat.
field_mappings
optional list. Used to map source data to a destination layer. Syntax: fieldMappings=[{“name” : <”targerName”>,
“sourceName” : < “sourceName”>}, …]
- Examples: fieldMappings=[{“name”“CountyID”,
“sourceName” : “GEOID10”}]
edits
optional string. Only feature collection json is supported. Append supports all format through the upload_id or item_id.
source_info
optional dictionary. This is only needed when appending data from excel or csv. The appendSourceInfo can be the publishing parameter returned from analyze the csv or excel file.
upsert
optional boolean. Optional parameter specifying whether the edits needs to be applied as updates if the feature already exists. Default is false.
skip_updates
Optional boolean. Parameter is used only when upsert is true.
use_globalids
Optional boolean. Specifying whether upsert needs to use GlobalId when matching features.
update_geometry
Optional boolean. The parameter is used only when upsert is true. Skip updating the geometry and update only the attributes for existing features if they match source features by objectId or globalId.(as specified by useGlobalIds parameter).
append_fields
Optional list. The list of destination fields to append to. This is supported when upsert=true or false. Values: [“fieldName1”, “fieldName2”,….]
upload_format
required string. The source append data format. The default is featureCollection format. Values: sqlite | shapefile | filegdb | featureCollection | geojson | csv | excel
rollback
Optional boolean. Optional parameter specifying whether the upsert edits needs to be rolled back in case of failure. Default is false.
skip_inserts
Used only when upsert is true. Used to skip inserts if the value is true. The default value is false.
upsert_matching_field
Optional string. The layer field to be used when matching features with upsert. ObjectId, GlobalId, and any other field that has a unique index can be used with upsert. This parameter overrides use_globalids; e.g., specifying upsert_matching_field will be used even if you specify use_globalids = True. Example: upsert_matching_field=”MyfieldWithUniqueIndex”
- Returns
boolean
-
calculate
(where, calc_expression, sql_format='standard', version=None, sessionid=None, return_edit_moment=None, future=False)¶ The calculate operation is performed on a feature layer resource. It updates the values of one or more fields in an existing feature service layer based on SQL expressions or scalar values. The calculate operation can only be used if the supportsCalculate property of the layer is true. Neither the Shape field nor system fields can be updated using calculate. System fields include ObjectId and GlobalId. See Calculate a field for more information on supported expressions
Inputs
Description
where
Required String. A where clause can be used to limit the updated records. Any legal SQL where clause operating on the fields in the layer is allowed.
calc_expression
Required List. The array of field/value info objects that contain the field or fields to update and their scalar values or SQL expression. Allowed types are dictionary and list. List must be a list of dictionary objects.
Calculation Format is as follows:
{“field” : “<field name>”, “value” : “<value>”}
sql_format
Optional String. The SQL format for the calc_expression. It can be either standard SQL92 (standard) or native SQL (native). The default is standard.
Values: standard, native
version
Optional String. The geodatabase version to apply the edits.
sessionid
Optional String. A parameter which is set by a client during long transaction editing on a branch version. The sessionid is a GUID value that clients establish at the beginning and use throughout the edit session. The sessonid ensures isolation during the edit session. This parameter applies only if the isDataBranchVersioned property of the layer is true.
return_edit_moment
Optional Boolean. This parameter specifies whether the response will report the time edits were applied. If true, the server will return the time edits were applied in the response’s edit moment key. This parameter applies only if the isDataBranchVersioned property of the layer is true.
future
Optional Boolean. If True, the result is returned as a future object and the results are obtained in an asynchronous fashion. False is the default.
This applies to 10.8+ only
# Usage Example 1: print(fl.calculate(where="OBJECTID < 2", calc_expression={"field": "ZONE", "value" : "R1"}))
# Usage Example 2: print(fl.calculate(where="OBJECTID < 2001", calc_expression={"field": "A", "sqlExpression" : "B*3"}))
Output: dictionary with format {‘updatedFeatureCount’: 1, ‘success’: True}
-
property
container
¶ The feature layer collection to which this layer belongs.
-
delete_features
(deletes=None, where=None, geometry_filter=None, gdb_version=None, rollback_on_failure=True, return_delete_results=True, future=False)¶ This operation deletes features in a feature layer or table
Argument
Description
deletes
Optional string. A comma seperated string of OIDs to remove from the service.
where
Optional string. A where clause for the query filter. Any legal SQL where clause operating on the fields in the layer is allowed. Features conforming to the specified where clause will be deleted.
geometry_filter
Optional SpatialFilter. A spatial filter from arcgis.geometry.filters module to filter results by a spatial relationship with another geometry.
gdb_version
Optional string. A Geodatabase version to apply the edits.
rollback_on_failure
Optional boolean. Optional parameter to specify if the edits should be applied only if all submitted edits succeed. If false, the server will apply the edits that succeed even if some of the submitted edits fail. If true, the server will apply the edits only if all edits succeed. The default value is true.
return_delete_results
Optional Boolean. Optional parameter that indicates whether a result is returned per deleted row when the deleteFeatures operation is run. The default is true.
future
Optional Boolean. If future=True, then the operation will occur asynchronously else the operation will occur synchronously. False is the default.
- Returns
Dict if future=False (default), else a concurrent.Future class.
-
edit_features
(adds=None, updates=None, deletes=None, gdb_version=None, use_global_ids=False, rollback_on_failure=True, return_edit_moment=False, attachments=None, true_curve_client=False, session_id=None, use_previous_moment=False, datum_transformation=None)¶ This operation adds, updates, and deletes features to the associated feature layer or table in a single call.
Inputs
Description
adds
Optional FeatureSet/List. The array of features to be added.
updates
Optional FeatureSet/List. The array of features to be updated.
deletes
Optional FeatureSet/List. string of OIDs to remove from service
use_global_ids
Optional boolean. Instead of referencing the default Object ID field, the service will look at a GUID field to track changes. This means the GUIDs will be passed instead of OIDs for delete, update or add features.
gdb_version
Optional boolean. Geodatabase version to apply the edits.
rollback_on_failure
Optional boolean. Optional parameter to specify if the edits should be applied only if all submitted edits succeed. If false, the server will apply the edits that succeed even if some of the submitted edits fail. If true, the server will apply the edits only if all edits succeed. The default value is true.
return_edit_moment
Optional boolean. Introduced at 10.5, only applicable with ArcGIS Server services only. Specifies whether the response will report the time edits were applied. If set to true, the server will return the time in the response’s editMoment key. The default value is false.
attachments
Optional Dict. This parameter adds, updates, or deletes attachments. It applies only when the use_global_ids parameter is set to true. For adds, the globalIds of the attachments provided by the client are preserved. When useGlobalIds is true, updates and deletes are identified by each feature or attachment globalId, rather than their objectId or attachmentId. This parameter requires the layer’s supportsApplyEditsWithGlobalIds property to be true.
Attachments to be added or updated can use either pre-uploaded data or base 64 encoded data.
Inputs
Inputs
Description
adds
List of attachments to add.
updates
List of attachements to update
deletes
List of attachments to delete
Additional attachment information here.
true_curve_client
Optional boolean. Introduced at 10.5. Indicates to the server whether the client is true curve capable. When set to true, this indicates to the server that true curve geometries should be downloaded and that geometries containing true curves should be consumed by the map service without densifying it. When set to false, this indicates to the server that the client is not true curves capable. The default value is false.
session_id
Optional String. Introduced at 10.6. The session_id is a GUID value that clients establish at the beginning and use throughout the edit session. The sessonID ensures isolation during the edit session. The session_id parameter is set by a client during long transaction editing on a branch version.
use_previous_moment
Optional Boolean. Introduced at 10.6. The use_previous_moment parameter is used to apply the edits with the same edit moment as the previous set of edits. This allows an editor to apply single block of edits partially, complete another task and then complete the block of edits. This parameter is set by a client during long transaction editing on a branch version.
When set to true, the edits are applied with the same edit moment as the previous set of edits. When set to false or not set (default) the edits are applied with a new edit moment.
datum_transformation
Optional Integer/Dictionary. This parameter applies a datum transformation while projecting geometries in the results when out_sr is different than the layer’s spatial reference. When specifying transformations, you need to think about which datum transformation best projects the layer (not the feature service) to the outSR and sourceSpatialReference property in the layer properties. For a list of valid datum transformation ID values ad well-known text strings, see Coordinate systems and transformations. For more information on datum transformations, please see the transformation parameter in the Project operation.
Examples
Inputs
Description
WKID
Integer. Ex: datum_transformation=4326
WKT
Dict. Ex: datum_transformation={“wkt”: “<WKT>”}
Composite
Dict. Ex: datum_transformation=```{‘geoTransforms’:[{‘wkid’:<id>,’forward’:<true|false>},{‘wkt’:’<WKT>’,’forward’:<True|False>}]}```
Output: dictionary
-
export_attachments
(output_folder, label_field=None)¶ Exports attachments from the feature layer in Imagenet format using the output_label_field.
Argument
Description
output_folder
Required. Output folder where the attachments will be stored.
label_field
Optional. Field which contains the label/category of each feature. If None, a default folder is created.
-
classmethod
fromitem
(item, layer_id=0)¶ Creates a feature layer from a GIS Item. The type of item should be a ‘Feature Service’ that represents a FeatureLayerCollection. The layer_id is the id of the layer in feature layer collection (feature service).
-
generate_renderer
(definition, where=None)¶ This operation groups data using the supplied definition (classification definition) and an optional where clause. The result is a renderer object. Use baseSymbol and colorRamp to define the symbols assigned to each class. If the operation is performed on a table, the result is a renderer object containing the data classes and no symbols.
Argument
Description
definition
required dict. The definition using the renderer that is generated. Use either class breaks or unique value classification definitions. See: https://resources.arcgis.com/en/help/rest/apiref/ms_classification.html
where
optional string. A where clause for which the data needs to be classified. Any legal SQL where clause operating on the fields in the dynamic layer/table is allowed.
- Returns
dictionary
-
get_html_popup
(oid)¶ The htmlPopup resource provides details about the HTML pop-up authored by the user using ArcGIS for Desktop.
Argument
Description
oid
Optional string. Object id of the feature to get the HTML popup.
- Returns
string
-
get_unique_values
(attribute, query_string='1=1')¶ Return a list of unique values for a given attribute
Argument
Description
attribute
Required string. The feature layer attribute to query.
query_string
Optional string. SQL Query that will be used to filter attributes before unique values are returned. ex. “name_2 like ‘%K%’”
-
property
manager
¶ Helper object to manage the feature layer, update it’s definition, etc
-
property
metadata
¶ The metadata property allows for the setting and downloading of the Feature Layer’s metadata. If metadata is disabled on the GIS or the layer does not support metdata, None value will be returned.
Argument
Description
value
Required String. (SET) Path to the metadata file.
- Returns
String (GET)
-
property
properties
¶ The properties of this object
-
query
(where='1=1', out_fields='*', time_filter=None, geometry_filter=None, return_geometry=True, return_count_only=False, return_ids_only=False, return_distinct_values=False, return_extent_only=False, group_by_fields_for_statistics=None, statistic_filter=None, result_offset=None, result_record_count=None, object_ids=None, distance=None, units=None, max_allowable_offset=None, out_sr=None, geometry_precision=None, gdb_version=None, order_by_fields=None, out_statistics=None, return_z=False, return_m=False, multipatch_option=None, quantization_parameters=None, return_centroid=False, return_all_records=True, result_type=None, historic_moment=None, sql_format=None, return_true_curves=False, return_exceeded_limit_features=None, as_df=False, datum_transformation=None, **kwargs)¶ Queries a feature layer based on a sql statement
Argument
Description
where
Optional string. The default is 1=1. The selection sql statement.
out_fields
Optional List of field names to return. Field names can be specified either as a List of field names or as a comma separated string. The default is “*”, which returns all the fields.
object_ids
Optional string. The object IDs of this layer or table to be queried. The object ID values should be a comma-separated string.
distance
Optional integer. The buffer distance for the input geometries. The distance unit is specified by units. For example, if the distance is 100, the query geometry is a point, units is set to meters, and all points within 100 meters of the point are returned.
units
Optional string. The unit for calculating the buffer distance. If unit is not specified, the unit is derived from the geometry spatial reference. If the geometry spatial reference is not specified, the unit is derived from the feature service data spatial reference. This parameter only applies if supportsQueryWithDistance is true. Values: esriSRUnit_Meter | esriSRUnit_StatuteMile |
esriSRUnit_Foot | esriSRUnit_Kilometer | esriSRUnit_NauticalMile | esriSRUnit_USNauticalMile
time_filter
Optional list. The format is of [<startTime>, <endTime>] using datetime.date, datetime.datetime or timestamp in milliseconds. Syntax: time_filter=[<startTime>, <endTime>] ; specified as
datetime.date, datetime.datetime or timestamp in milliseconds
geometry_filter
Optional from arcgis.geometry.filter. Allows for the information to be filtered on spatial relationship with another geometry.
max_allowable_offset
Optional float. This option can be used to specify the max_allowable_offset to be used for generalizing geometries returned by the query operation. The max_allowable_offset is in the units of out_sr. If out_sr is not specified, max_allowable_offset is assumed to be in the unit of the spatial reference of the layer.
out_sr
Optional Integer. The WKID for the spatial reference of the returned geometry.
geometry_precision
Optional Integer. This option can be used to specify the number of decimal places in the response geometries returned by the query operation. This applies to X and Y values only (not m or z-values).
gdb_version
Optional string. The geodatabase version to query. This parameter applies only if the isDataVersioned property of the layer is true. If this is not specified, the query will apply to the published map’s version.
return_geometry
Optional boolean. If true, geometry is returned with the query. Default is true.
return_distinct_values
Optional boolean. If true, it returns distinct values based on the fields specified in out_fields. This parameter applies only if the supportsAdvancedQueries property of the layer is true.
return_ids_only
Optional boolean. Default is False. If true, the response only includes an array of object IDs. Otherwise, the response is a feature set.
return_count_only
Optional boolean. If true, the response only includes the count (number of features/records) that would be returned by a query. Otherwise, the response is a feature set. The default is false. This option supersedes the returnIdsOnly parameter. If returnCountOnly = true, the response will return both the count and the extent.
return_extent_only
Optional boolean. If true, the response only includes the extent of the features that would be returned by the query. If returnCountOnly=true, the response will return both the count and the extent. The default is false. This parameter applies only if the supportsReturningQueryExtent property of the layer is true.
order_by_fields
Optional string. One or more field names on which the features/records need to be ordered. Use ASC or DESC for ascending or descending, respectively, following every field to control the ordering. example: STATE_NAME ASC, RACE DESC, GENDER
group_by_fields_for_statistics
Optional string. One or more field names on which the values need to be grouped for calculating the statistics. example: STATE_NAME, GENDER
out_statistics
Optional string. The definitions for one or more field-based statistics to be calculated.
Syntax:
- [
- {
“statisticType”: “<count | sum | min | max | avg | stddev | var>”, “onStatisticField”: “Field1”, “outStatisticFieldName”: “Out_Field_Name1”
}, {
“statisticType”: “<count | sum | min | max | avg | stddev | var>”, “onStatisticField”: “Field2”, “outStatisticFieldName”: “Out_Field_Name2”
}
]
return_z
Optional boolean. If true, Z values are included in the results if the features have Z values. Otherwise, Z values are not returned. The default is False.
return_m
Optional boolean. If true, M values are included in the results if the features have M values. Otherwise, M values are not returned. The default is false.
multipatch_option
Optional x/y footprint. This option dictates how the geometry of a multipatch feature will be returned.
result_offset
Optional integer. This option can be used for fetching query results by skipping the specified number of records and starting from the next record (that is, resultOffset + 1th). This option is ignored if return_all_records is True (i.e. by default).
result_record_count
Optional integer. This option can be used for fetching query results up to the result_record_count specified. When result_offset is specified but this parameter is not, the map service defaults it to max_record_count. The maximum value for this parameter is the value of the layer’s max_record_count property. This option is ignored if return_all_records is True (i.e. by default).
quantization_parameters
Optional dict. Used to project the geometry onto a virtual grid, likely representing pixels on the screen.
return_centroid
Optional boolean. Used to return the geometry centroid associated with each feature returned. If true, the result includes the geometry centroid. The default is false.
return_all_records
Optional boolean. When True, the query operation will call the service until all records that satisfy the where_clause are returned. Note: result_offset and result_record_count will be ignored if return_all_records is True. Also, if return_count_only, return_ids_only, or return_extent_only are True, this parameter will be ignored.
result_type
Optional string. The result_type parameter can be used to control the number of features returned by the query operation. Values: None | standard | tile
historic_moment
Optional integer. The historic moment to query. This parameter applies only if the layer is archiving enabled and the supportsQueryWithHistoricMoment property is set to true. This property is provided in the layer resource.
If historic_moment is not specified, the query will apply to the current features.
sql_format
Optional string. The sql_format parameter can be either standard SQL92 standard or it can use the native SQL of the underlying datastore native. The default is none which means the sql_format depends on useStandardizedQuery parameter. Values: none | standard | native
return_true_curves
Optional boolean. When set to true, returns true curves in output geometries. When set to false, curves are converted to densified polylines or polygons.
return_exceeded_limit_features
Optional boolean. Optional parameter which is true by default. When set to true, features are returned even when the results include ‘exceededTransferLimit’: True.
When set to false and querying with resultType = tile features are not returned when the results include ‘exceededTransferLimit’: True. This allows a client to find the resolution in which the transfer limit is no longer exceeded without making multiple calls.
as_df
Optional boolean. If True, the results are returned as a DataFrame instead of a FeatureSet.
datum_transformation
Optional Integer/Dictionary. This parameter applies a datum transformation while projecting geometries in the results when out_sr is different than the layer’s spatial reference. When specifying transformations, you need to think about which datum transformation best projects the layer (not the feature service) to the outSR and sourceSpatialReference property in the layer properties. For a list of valid datum transformation ID values ad well-known text strings, see Coordinate systems and transformations. For more information on datum transformations, please see the transformation parameter in the Project operation.
Examples
Inputs
Description
WKID
Integer. Ex: datum_transformation=4326
WKT
Dict. Ex: datum_transformation={“wkt”: “<WKT>”}
Composite
Dict. Ex: datum_transformation=```{‘geoTransforms’:[{‘wkid’:<id>,’forward’:<true|false>},{‘wkt’:’<WKT>’,’forward’:<True|False>}]}```
kwargs
Optional dict. Optional parameters that can be passed to the Query function. This will allow users to pass additional parameters not explicitly implemented on the function. A complete list of functions available is documented on the Query REST API.
- Returns
A FeatureSet containing the features matching the query unless another return type is specified, such as count
The Query operation is performed on a feature service layer resource. The result of this operation are feature sets grouped by source layer/table object IDs. Each feature set contains Feature objects including the values for the fields requested by the user. For related layers, if you request geometry information, the geometry of each feature is also returned in the feature set. For related tables, the feature set does not include geometries.
Argument
Description
object_ids
Required string. The object IDs of the table/layer to be queried
relationship_id
Required string. The ID of the relationship to be queried.
out_fields
Required string. the list of fields from the related table/layer to be included in the returned feature set. This list is a comma delimited list of field names. If you specify the shape field in the list of return fields, it is ignored. To request geometry, set return_geometry to true. You can also specify the wildcard “*” as the value of this parameter. In this case, the results will include all the field values.
definition_expression
Optional string. The definition expression to be applied to the related table/layer. From the list of objectIds, only those records that conform to this expression are queried for related records.
return_geometry
Optional boolean. If true, the feature set includes the geometry associated with each feature. The default is true.
max_allowable_offset
Optional float. This option can be used to specify the max_allowable_offset to be used for generalizing geometries returned by the query operation. The max_allowable_offset is in the units of the outSR. If out_wkid is not specified, then max_allowable_offset is assumed to be in the unit of the spatial reference of the map.
geometry_precision
Optional integer. This option can be used to specify the number of decimal places in the response geometries.
out_wkid
Optional Integer. The spatial reference of the returned geometry.
gdb_version
Optional string. The geodatabase version to query. This parameter applies only if the isDataVersioned property of the layer queried is true.
return_z
Optional boolean. If true, Z values are included in the results if the features have Z values. Otherwise, Z values are not returned. The default is false.
return_m
Optional boolean. If true, M values are included in the results if the features have M values. Otherwise, M values are not returned. The default is false.
historic_moment
Optional Integer/datetime. The historic moment to query. This parameter applies only if the supportsQueryWithHistoricMoment property of the layers being queried is set to true. This setting is provided in the layer resource.
If historic_moment is not specified, the query will apply to the current features.
Syntax: historic_moment=<Epoch time in milliseconds>
return_true_curves
Optional boolean. Optional parameter that is false by default. When set to true, returns true curves in output geometries; otherwise, curves are converted to densified polylines or polygons.
- Returns
dict
-
query_top_features
(top_filter=None, where=None, objectids=None, start_time=None, end_time=None, geometry_filter=None, out_fields='*', return_geometry=True, return_centroid=False, max_allowable_offset=None, out_sr=None, geometry_precision=None, return_ids_only=False, return_extents_only=False, order_by_field=None, return_z=False, return_m=False, result_type=None, as_df=True)¶ The query_top_features is performed on a feature layer. This operation returns a feature set or spatially enabled dataframe based on the top features by order within a group. For example, when querying counties in the United States, you want to return the top five counties by population in each state. To do this, you can use query_top_feaures to group by state name, order by desc on the population and return the first five rows from each group (state).
The top_filter parameter is used to set the group by, order by, and count criteria used in generating the result. The operation also has many of the same parameters (for example, where and geometry) as the layer query operation. However, unlike the layer query operation, query_top_feaures does not support parameters such as outStatistics and its related parameters or return distinct values. Consult the advancedQueryCapabilities layer property for more details.
If the feature layer collection supports the query_top_feaures operation, it will include “supportsTopFeaturesQuery”: true, in the advancedQueryCapabilities layer property.
Argument
Description
top_filter
Required Dict. The top_filter define the aggregation of the data.
- groupByFields define the field or fields used to aggregate
your data.
- topCount defines the number of features returned from the top
features query and is a numeric value.
- orderByFields defines the order in which the top features will
be returned. orderByFields can be specified in either ascending (asc) or descending (desc) order, ascending being the default.
- Example: {“groupByFields”: “worker”, “topCount”: 1,
“orderByFields”: “employeeNumber”}
where
Optional String. A WHERE clause for the query filter. SQL ‘92 WHERE clause syntax on the fields in the layer is supported for most data sources.
objectids
Optional List. The object IDs of the layer or table to be queried.
start_time
Optional Datetime. The starting time to query for.
end_time
Optional Datetime. The end date to query for.
geometry_filter
Optional from arcgis.geometry.filter. Allows for the information to be filtered on spatial relationship with another geometry.
out_fields
Optional String. The list of fields to include in the return results.
return_geometry
Optional Boolean. If False, the query will not return geometries. The default is True.
return_centroid
Optional Boolean. If True, the centroid of the geometry will be added to the output.
max_allowable_offset
Optional float. This option can be used to specify the max_allowable_offset to be used for generalizing geometries returned by the query operation. The max_allowable_offset is in the units of out_sr. If out_sr is not specified, max_allowable_offset is assumed to be in the unit of the spatial reference of the layer.
out_sr
Optional Integer. The WKID for the spatial reference of the returned geometry.
geometry_precision
Optional Integer. This option can be used to specify the number of decimal places in the response geometries returned by the query operation. This applies to X and Y values only (not m or z-values).
return_ids_only
Optional boolean. Default is False. If true, the response only includes an array of object IDs. Otherwise, the response is a feature set.
return_extent_only
Optional boolean. If true, the response only includes the extent of the features that would be returned by the query. If returnCountOnly=true, the response will return both the count and the extent. The default is false. This parameter applies only if the supportsReturningQueryExtent property of the layer is true.
order_by_field
Optional Str. Optional string. One or more field names on which the features/records need to be ordered. Use ASC or DESC for ascending or descending, respectively, following every field to control the ordering. example: STATE_NAME ASC, RACE DESC, GENDER
return_z
Optional boolean. If true, Z values are included in the results if the features have Z values. Otherwise, Z values are not returned. The default is False.
return_m
Optional boolean. If true, M values are included in the results if the features have M values. Otherwise, M values are not returned. The default is false.
result_type
Optional String. The result_type can be used to control the number of features returned by the query operation. Values: none | standard | tile
as_df
Optional Boolean. If False, the result is returned as a FeatureSet. If True (default) the result is returned as a spatially enabled dataframe.
- Returns
Default - pd.DataFrame, when as_df=False returns a FeatureSet. If return_count_only is True, the return type is Integer. If the return_ids_only is True, a list of value is returned.
-
property
renderer
¶ Get/Set the Renderer of the Feature Layer. This overrides the default symbology when displaying it on a webmap.
- Returns
InsensitiveDict
-
update_metadata
(file_path)¶ Updates a Layer’s metadata from an xml file.
Argument
Description
file_path
Required String. The path to the .xml file that contains the metadata.
- Returns
boolean
-
validate_sql
(sql, sql_type='where')¶ The validate_sql operation validates an SQL-92 expression or WHERE clause. The validate_sql operation ensures that an SQL-92 expression, such as one written by a user through a user interface, is correct before performing another operation that uses the expression. For example, validateSQL can be used to validate information that is subsequently passed in as part of the where parameter of the calculate operation. validate_sql also prevents SQL injection. In addition, all table and field names used in the SQL expression or WHERE clause are validated to ensure they are valid tables and fields.
Argument
Description
sql
Required String. The SQL expression of WHERE clause to validate. Example: “Population > 300000”
sql_type
- Optional String. Three SQL types are supported in validate_sql
where (default) - Represents the custom WHERE clause the user can compose when querying a layer or using calculate.
expression - Represents an SQL-92 expression. Currently, expression is used as a default value expression when adding a new field or using the calculate API.
statement - Represents the full SQL-92 statement that can be passed directly to the database. No current ArcGIS REST API resource or operation supports using the full SQL-92 SELECT statement directly. It has been added to the validateSQL for completeness. Values: where | expression | statement
- Returns
dict
-
arcgis.features.Table¶
-
class
arcgis.features.
Table
(url, gis=None, container=None, dynamic_layer=None)¶ Tables represent entity classes with uniform properties. In addition to working with “entities with location” as features, the GIS can also work with non-spatial entities as rows in tables.
Working with tables is similar to working with feature layers, except that the rows (Features) in a table do not have a geometry, and tables ignore any geometry related operation.
-
append
(item_id=None, upload_format='featureCollection', source_table_name=None, field_mappings=None, edits=None, source_info=None, upsert=True, skip_updates=False, use_globalids=False, update_geometry=True, append_fields=None, rollback=False, skip_inserts=None, upsert_matching_field=None)¶ Only available in ArcGIS Online
Update an existing hosted feature layer using append.
Argument
Description
source_table_name
optional string. Required only when the source data contains more than one tables, e.g., for file geodatabase. Example: source_table_name= “Building”
item_id
optional string. The ID for the Portal item that contains the source file. Used in conjunction with editsUploadFormat.
field_mappings
optional list. Used to map source data to a destination layer. Syntax: fieldMappings=[{“name” : <”targerName”>,
“sourceName” : < “sourceName”>}, …]
- Examples: fieldMappings=[{“name”“CountyID”,
“sourceName” : “GEOID10”}]
edits
optional string. Only feature collection json is supported. Append supports all format through the upload_id or item_id.
source_info
optional dictionary. This is only needed when appending data from excel or csv. The appendSourceInfo can be the publishing parameter returned from analyze the csv or excel file.
upsert
optional boolean. Optional parameter specifying whether the edits needs to be applied as updates if the feature already exists. Default is false.
skip_updates
Optional boolean. Parameter is used only when upsert is true.
use_globalids
Optional boolean. Specifying whether upsert needs to use GlobalId when matching features.
update_geometry
Optional boolean. The parameter is used only when upsert is true. Skip updating the geometry and update only the attributes for existing features if they match source features by objectId or globalId.(as specified by useGlobalIds parameter).
append_fields
Optional list. The list of destination fields to append to. This is supported when upsert=true or false. Values: [“fieldName1”, “fieldName2”,….]
upload_format
required string. The source append data format. The default is featureCollection format. Values: sqlite | shapefile | filegdb | featureCollection | geojson | csv | excel
rollback
Optional boolean. Optional parameter specifying whether the upsert edits needs to be rolled back in case of failure. Default is false.
skip_inserts
Used only when upsert is true. Used to skip inserts if the value is true. The default value is false.
upsert_matching_field
Optional string. The layer field to be used when matching features with upsert. ObjectId, GlobalId, and any other field that has a unique index can be used with upsert. This parameter overrides use_globalids; e.g., specifying upsert_matching_field will be used even if you specify use_globalids = True. Example: upsert_matching_field=”MyfieldWithUniqueIndex”
- Returns
boolean
-
calculate
(where, calc_expression, sql_format='standard', version=None, sessionid=None, return_edit_moment=None, future=False)¶ The calculate operation is performed on a feature layer resource. It updates the values of one or more fields in an existing feature service layer based on SQL expressions or scalar values. The calculate operation can only be used if the supportsCalculate property of the layer is true. Neither the Shape field nor system fields can be updated using calculate. System fields include ObjectId and GlobalId. See Calculate a field for more information on supported expressions
Inputs
Description
where
Required String. A where clause can be used to limit the updated records. Any legal SQL where clause operating on the fields in the layer is allowed.
calc_expression
Required List. The array of field/value info objects that contain the field or fields to update and their scalar values or SQL expression. Allowed types are dictionary and list. List must be a list of dictionary objects.
Calculation Format is as follows:
{“field” : “<field name>”, “value” : “<value>”}
sql_format
Optional String. The SQL format for the calc_expression. It can be either standard SQL92 (standard) or native SQL (native). The default is standard.
Values: standard, native
version
Optional String. The geodatabase version to apply the edits.
sessionid
Optional String. A parameter which is set by a client during long transaction editing on a branch version. The sessionid is a GUID value that clients establish at the beginning and use throughout the edit session. The sessonid ensures isolation during the edit session. This parameter applies only if the isDataBranchVersioned property of the layer is true.
return_edit_moment
Optional Boolean. This parameter specifies whether the response will report the time edits were applied. If true, the server will return the time edits were applied in the response’s edit moment key. This parameter applies only if the isDataBranchVersioned property of the layer is true.
future
Optional Boolean. If True, the result is returned as a future object and the results are obtained in an asynchronous fashion. False is the default.
This applies to 10.8+ only
# Usage Example 1: print(fl.calculate(where="OBJECTID < 2", calc_expression={"field": "ZONE", "value" : "R1"}))
# Usage Example 2: print(fl.calculate(where="OBJECTID < 2001", calc_expression={"field": "A", "sqlExpression" : "B*3"}))
Output: dictionary with format {‘updatedFeatureCount’: 1, ‘success’: True}
-
property
container
¶ The feature layer collection to which this layer belongs.
-
delete_features
(deletes=None, where=None, geometry_filter=None, gdb_version=None, rollback_on_failure=True, return_delete_results=True, future=False)¶ This operation deletes features in a feature layer or table
Argument
Description
deletes
Optional string. A comma seperated string of OIDs to remove from the service.
where
Optional string. A where clause for the query filter. Any legal SQL where clause operating on the fields in the layer is allowed. Features conforming to the specified where clause will be deleted.
geometry_filter
Optional SpatialFilter. A spatial filter from arcgis.geometry.filters module to filter results by a spatial relationship with another geometry.
gdb_version
Optional string. A Geodatabase version to apply the edits.
rollback_on_failure
Optional boolean. Optional parameter to specify if the edits should be applied only if all submitted edits succeed. If false, the server will apply the edits that succeed even if some of the submitted edits fail. If true, the server will apply the edits only if all edits succeed. The default value is true.
return_delete_results
Optional Boolean. Optional parameter that indicates whether a result is returned per deleted row when the deleteFeatures operation is run. The default is true.
future
Optional Boolean. If future=True, then the operation will occur asynchronously else the operation will occur synchronously. False is the default.
- Returns
Dict if future=False (default), else a concurrent.Future class.
-
edit_features
(adds=None, updates=None, deletes=None, gdb_version=None, use_global_ids=False, rollback_on_failure=True, return_edit_moment=False, attachments=None, true_curve_client=False, session_id=None, use_previous_moment=False, datum_transformation=None)¶ This operation adds, updates, and deletes features to the associated feature layer or table in a single call.
Inputs
Description
adds
Optional FeatureSet/List. The array of features to be added.
updates
Optional FeatureSet/List. The array of features to be updated.
deletes
Optional FeatureSet/List. string of OIDs to remove from service
use_global_ids
Optional boolean. Instead of referencing the default Object ID field, the service will look at a GUID field to track changes. This means the GUIDs will be passed instead of OIDs for delete, update or add features.
gdb_version
Optional boolean. Geodatabase version to apply the edits.
rollback_on_failure
Optional boolean. Optional parameter to specify if the edits should be applied only if all submitted edits succeed. If false, the server will apply the edits that succeed even if some of the submitted edits fail. If true, the server will apply the edits only if all edits succeed. The default value is true.
return_edit_moment
Optional boolean. Introduced at 10.5, only applicable with ArcGIS Server services only. Specifies whether the response will report the time edits were applied. If set to true, the server will return the time in the response’s editMoment key. The default value is false.
attachments
Optional Dict. This parameter adds, updates, or deletes attachments. It applies only when the use_global_ids parameter is set to true. For adds, the globalIds of the attachments provided by the client are preserved. When useGlobalIds is true, updates and deletes are identified by each feature or attachment globalId, rather than their objectId or attachmentId. This parameter requires the layer’s supportsApplyEditsWithGlobalIds property to be true.
Attachments to be added or updated can use either pre-uploaded data or base 64 encoded data.
Inputs
Inputs
Description
adds
List of attachments to add.
updates
List of attachements to update
deletes
List of attachments to delete
Additional attachment information here.
true_curve_client
Optional boolean. Introduced at 10.5. Indicates to the server whether the client is true curve capable. When set to true, this indicates to the server that true curve geometries should be downloaded and that geometries containing true curves should be consumed by the map service without densifying it. When set to false, this indicates to the server that the client is not true curves capable. The default value is false.
session_id
Optional String. Introduced at 10.6. The session_id is a GUID value that clients establish at the beginning and use throughout the edit session. The sessonID ensures isolation during the edit session. The session_id parameter is set by a client during long transaction editing on a branch version.
use_previous_moment
Optional Boolean. Introduced at 10.6. The use_previous_moment parameter is used to apply the edits with the same edit moment as the previous set of edits. This allows an editor to apply single block of edits partially, complete another task and then complete the block of edits. This parameter is set by a client during long transaction editing on a branch version.
When set to true, the edits are applied with the same edit moment as the previous set of edits. When set to false or not set (default) the edits are applied with a new edit moment.
datum_transformation
Optional Integer/Dictionary. This parameter applies a datum transformation while projecting geometries in the results when out_sr is different than the layer’s spatial reference. When specifying transformations, you need to think about which datum transformation best projects the layer (not the feature service) to the outSR and sourceSpatialReference property in the layer properties. For a list of valid datum transformation ID values ad well-known text strings, see Coordinate systems and transformations. For more information on datum transformations, please see the transformation parameter in the Project operation.
Examples
Inputs
Description
WKID
Integer. Ex: datum_transformation=4326
WKT
Dict. Ex: datum_transformation={“wkt”: “<WKT>”}
Composite
Dict. Ex: datum_transformation=```{‘geoTransforms’:[{‘wkid’:<id>,’forward’:<true|false>},{‘wkt’:’<WKT>’,’forward’:<True|False>}]}```
Output: dictionary
-
export_attachments
(output_folder, label_field=None)¶ Exports attachments from the feature layer in Imagenet format using the output_label_field.
Argument
Description
output_folder
Required. Output folder where the attachments will be stored.
label_field
Optional. Field which contains the label/category of each feature. If None, a default folder is created.
-
classmethod
fromitem
(item, table_id=0)¶ Creates a Table from a GIS Item. The type of item should be a ‘Feature Service’ that represents a FeatureLayerCollection. The layer_id is the id of the layer in feature layer collection (feature service).
-
generate_renderer
(definition, where=None)¶ This operation groups data using the supplied definition (classification definition) and an optional where clause. The result is a renderer object. Use baseSymbol and colorRamp to define the symbols assigned to each class. If the operation is performed on a table, the result is a renderer object containing the data classes and no symbols.
Argument
Description
definition
required dict. The definition using the renderer that is generated. Use either class breaks or unique value classification definitions. See: https://resources.arcgis.com/en/help/rest/apiref/ms_classification.html
where
optional string. A where clause for which the data needs to be classified. Any legal SQL where clause operating on the fields in the dynamic layer/table is allowed.
- Returns
dictionary
-
get_html_popup
(oid)¶ The htmlPopup resource provides details about the HTML pop-up authored by the user using ArcGIS for Desktop.
Argument
Description
oid
Optional string. Object id of the feature to get the HTML popup.
- Returns
string
-
get_unique_values
(attribute, query_string='1=1')¶ Return a list of unique values for a given attribute
Argument
Description
attribute
Required string. The feature layer attribute to query.
query_string
Optional string. SQL Query that will be used to filter attributes before unique values are returned. ex. “name_2 like ‘%K%’”
-
property
manager
¶ Helper object to manage the feature layer, update it’s definition, etc
-
property
metadata
¶ The metadata property allows for the setting and downloading of the Feature Layer’s metadata. If metadata is disabled on the GIS or the layer does not support metdata, None value will be returned.
Argument
Description
value
Required String. (SET) Path to the metadata file.
- Returns
String (GET)
-
property
properties
¶ The properties of this object
-
query
(where='1=1', out_fields='*', time_filter=None, geometry_filter=None, return_geometry=True, return_count_only=False, return_ids_only=False, return_distinct_values=False, return_extent_only=False, group_by_fields_for_statistics=None, statistic_filter=None, result_offset=None, result_record_count=None, object_ids=None, distance=None, units=None, max_allowable_offset=None, out_sr=None, geometry_precision=None, gdb_version=None, order_by_fields=None, out_statistics=None, return_z=False, return_m=False, multipatch_option=None, quantization_parameters=None, return_centroid=False, return_all_records=True, result_type=None, historic_moment=None, sql_format=None, return_true_curves=False, return_exceeded_limit_features=None, as_df=False, datum_transformation=None, **kwargs)¶ Queries a feature layer based on a sql statement
Argument
Description
where
Optional string. The default is 1=1. The selection sql statement.
out_fields
Optional List of field names to return. Field names can be specified either as a List of field names or as a comma separated string. The default is “*”, which returns all the fields.
object_ids
Optional string. The object IDs of this layer or table to be queried. The object ID values should be a comma-separated string.
distance
Optional integer. The buffer distance for the input geometries. The distance unit is specified by units. For example, if the distance is 100, the query geometry is a point, units is set to meters, and all points within 100 meters of the point are returned.
units
Optional string. The unit for calculating the buffer distance. If unit is not specified, the unit is derived from the geometry spatial reference. If the geometry spatial reference is not specified, the unit is derived from the feature service data spatial reference. This parameter only applies if supportsQueryWithDistance is true. Values: esriSRUnit_Meter | esriSRUnit_StatuteMile |
esriSRUnit_Foot | esriSRUnit_Kilometer | esriSRUnit_NauticalMile | esriSRUnit_USNauticalMile
time_filter
Optional list. The format is of [<startTime>, <endTime>] using datetime.date, datetime.datetime or timestamp in milliseconds. Syntax: time_filter=[<startTime>, <endTime>] ; specified as
datetime.date, datetime.datetime or timestamp in milliseconds
geometry_filter
Optional from arcgis.geometry.filter. Allows for the information to be filtered on spatial relationship with another geometry.
max_allowable_offset
Optional float. This option can be used to specify the max_allowable_offset to be used for generalizing geometries returned by the query operation. The max_allowable_offset is in the units of out_sr. If out_sr is not specified, max_allowable_offset is assumed to be in the unit of the spatial reference of the layer.
out_sr
Optional Integer. The WKID for the spatial reference of the returned geometry.
geometry_precision
Optional Integer. This option can be used to specify the number of decimal places in the response geometries returned by the query operation. This applies to X and Y values only (not m or z-values).
gdb_version
Optional string. The geodatabase version to query. This parameter applies only if the isDataVersioned property of the layer is true. If this is not specified, the query will apply to the published map’s version.
return_geometry
Optional boolean. If true, geometry is returned with the query. Default is true.
return_distinct_values
Optional boolean. If true, it returns distinct values based on the fields specified in out_fields. This parameter applies only if the supportsAdvancedQueries property of the layer is true.
return_ids_only
Optional boolean. Default is False. If true, the response only includes an array of object IDs. Otherwise, the response is a feature set.
return_count_only
Optional boolean. If true, the response only includes the count (number of features/records) that would be returned by a query. Otherwise, the response is a feature set. The default is false. This option supersedes the returnIdsOnly parameter. If returnCountOnly = true, the response will return both the count and the extent.
return_extent_only
Optional boolean. If true, the response only includes the extent of the features that would be returned by the query. If returnCountOnly=true, the response will return both the count and the extent. The default is false. This parameter applies only if the supportsReturningQueryExtent property of the layer is true.
order_by_fields
Optional string. One or more field names on which the features/records need to be ordered. Use ASC or DESC for ascending or descending, respectively, following every field to control the ordering. example: STATE_NAME ASC, RACE DESC, GENDER
group_by_fields_for_statistics
Optional string. One or more field names on which the values need to be grouped for calculating the statistics. example: STATE_NAME, GENDER
out_statistics
Optional string. The definitions for one or more field-based statistics to be calculated.
Syntax:
- [
- {
“statisticType”: “<count | sum | min | max | avg | stddev | var>”, “onStatisticField”: “Field1”, “outStatisticFieldName”: “Out_Field_Name1”
}, {
“statisticType”: “<count | sum | min | max | avg | stddev | var>”, “onStatisticField”: “Field2”, “outStatisticFieldName”: “Out_Field_Name2”
}
]
return_z
Optional boolean. If true, Z values are included in the results if the features have Z values. Otherwise, Z values are not returned. The default is False.
return_m
Optional boolean. If true, M values are included in the results if the features have M values. Otherwise, M values are not returned. The default is false.
multipatch_option
Optional x/y footprint. This option dictates how the geometry of a multipatch feature will be returned.
result_offset
Optional integer. This option can be used for fetching query results by skipping the specified number of records and starting from the next record (that is, resultOffset + 1th). This option is ignored if return_all_records is True (i.e. by default).
result_record_count
Optional integer. This option can be used for fetching query results up to the result_record_count specified. When result_offset is specified but this parameter is not, the map service defaults it to max_record_count. The maximum value for this parameter is the value of the layer’s max_record_count property. This option is ignored if return_all_records is True (i.e. by default).
quantization_parameters
Optional dict. Used to project the geometry onto a virtual grid, likely representing pixels on the screen.
return_centroid
Optional boolean. Used to return the geometry centroid associated with each feature returned. If true, the result includes the geometry centroid. The default is false.
return_all_records
Optional boolean. When True, the query operation will call the service until all records that satisfy the where_clause are returned. Note: result_offset and result_record_count will be ignored if return_all_records is True. Also, if return_count_only, return_ids_only, or return_extent_only are True, this parameter will be ignored.
result_type
Optional string. The result_type parameter can be used to control the number of features returned by the query operation. Values: None | standard | tile
historic_moment
Optional integer. The historic moment to query. This parameter applies only if the layer is archiving enabled and the supportsQueryWithHistoricMoment property is set to true. This property is provided in the layer resource.
If historic_moment is not specified, the query will apply to the current features.
sql_format
Optional string. The sql_format parameter can be either standard SQL92 standard or it can use the native SQL of the underlying datastore native. The default is none which means the sql_format depends on useStandardizedQuery parameter. Values: none | standard | native
return_true_curves
Optional boolean. When set to true, returns true curves in output geometries. When set to false, curves are converted to densified polylines or polygons.
return_exceeded_limit_features
Optional boolean. Optional parameter which is true by default. When set to true, features are returned even when the results include ‘exceededTransferLimit’: True.
When set to false and querying with resultType = tile features are not returned when the results include ‘exceededTransferLimit’: True. This allows a client to find the resolution in which the transfer limit is no longer exceeded without making multiple calls.
as_df
Optional boolean. If True, the results are returned as a DataFrame instead of a FeatureSet.
datum_transformation
Optional Integer/Dictionary. This parameter applies a datum transformation while projecting geometries in the results when out_sr is different than the layer’s spatial reference. When specifying transformations, you need to think about which datum transformation best projects the layer (not the feature service) to the outSR and sourceSpatialReference property in the layer properties. For a list of valid datum transformation ID values ad well-known text strings, see Coordinate systems and transformations. For more information on datum transformations, please see the transformation parameter in the Project operation.
Examples
Inputs
Description
WKID
Integer. Ex: datum_transformation=4326
WKT
Dict. Ex: datum_transformation={“wkt”: “<WKT>”}
Composite
Dict. Ex: datum_transformation=```{‘geoTransforms’:[{‘wkid’:<id>,’forward’:<true|false>},{‘wkt’:’<WKT>’,’forward’:<True|False>}]}```
kwargs
Optional dict. Optional parameters that can be passed to the Query function. This will allow users to pass additional parameters not explicitly implemented on the function. A complete list of functions available is documented on the Query REST API.
- Returns
A FeatureSet containing the features matching the query unless another return type is specified, such as count
The Query operation is performed on a feature service layer resource. The result of this operation are feature sets grouped by source layer/table object IDs. Each feature set contains Feature objects including the values for the fields requested by the user. For related layers, if you request geometry information, the geometry of each feature is also returned in the feature set. For related tables, the feature set does not include geometries.
Argument
Description
object_ids
Required string. The object IDs of the table/layer to be queried
relationship_id
Required string. The ID of the relationship to be queried.
out_fields
Required string. the list of fields from the related table/layer to be included in the returned feature set. This list is a comma delimited list of field names. If you specify the shape field in the list of return fields, it is ignored. To request geometry, set return_geometry to true. You can also specify the wildcard “*” as the value of this parameter. In this case, the results will include all the field values.
definition_expression
Optional string. The definition expression to be applied to the related table/layer. From the list of objectIds, only those records that conform to this expression are queried for related records.
return_geometry
Optional boolean. If true, the feature set includes the geometry associated with each feature. The default is true.
max_allowable_offset
Optional float. This option can be used to specify the max_allowable_offset to be used for generalizing geometries returned by the query operation. The max_allowable_offset is in the units of the outSR. If out_wkid is not specified, then max_allowable_offset is assumed to be in the unit of the spatial reference of the map.
geometry_precision
Optional integer. This option can be used to specify the number of decimal places in the response geometries.
out_wkid
Optional Integer. The spatial reference of the returned geometry.
gdb_version
Optional string. The geodatabase version to query. This parameter applies only if the isDataVersioned property of the layer queried is true.
return_z
Optional boolean. If true, Z values are included in the results if the features have Z values. Otherwise, Z values are not returned. The default is false.
return_m
Optional boolean. If true, M values are included in the results if the features have M values. Otherwise, M values are not returned. The default is false.
historic_moment
Optional Integer/datetime. The historic moment to query. This parameter applies only if the supportsQueryWithHistoricMoment property of the layers being queried is set to true. This setting is provided in the layer resource.
If historic_moment is not specified, the query will apply to the current features.
Syntax: historic_moment=<Epoch time in milliseconds>
return_true_curves
Optional boolean. Optional parameter that is false by default. When set to true, returns true curves in output geometries; otherwise, curves are converted to densified polylines or polygons.
- Returns
dict
-
query_top_features
(top_filter=None, where=None, objectids=None, start_time=None, end_time=None, geometry_filter=None, out_fields='*', return_geometry=True, return_centroid=False, max_allowable_offset=None, out_sr=None, geometry_precision=None, return_ids_only=False, return_extents_only=False, order_by_field=None, return_z=False, return_m=False, result_type=None, as_df=True)¶ The query_top_features is performed on a feature layer. This operation returns a feature set or spatially enabled dataframe based on the top features by order within a group. For example, when querying counties in the United States, you want to return the top five counties by population in each state. To do this, you can use query_top_feaures to group by state name, order by desc on the population and return the first five rows from each group (state).
The top_filter parameter is used to set the group by, order by, and count criteria used in generating the result. The operation also has many of the same parameters (for example, where and geometry) as the layer query operation. However, unlike the layer query operation, query_top_feaures does not support parameters such as outStatistics and its related parameters or return distinct values. Consult the advancedQueryCapabilities layer property for more details.
If the feature layer collection supports the query_top_feaures operation, it will include “supportsTopFeaturesQuery”: true, in the advancedQueryCapabilities layer property.
Argument
Description
top_filter
Required Dict. The top_filter define the aggregation of the data.
- groupByFields define the field or fields used to aggregate
your data.
- topCount defines the number of features returned from the top
features query and is a numeric value.
- orderByFields defines the order in which the top features will
be returned. orderByFields can be specified in either ascending (asc) or descending (desc) order, ascending being the default.
- Example: {“groupByFields”: “worker”, “topCount”: 1,
“orderByFields”: “employeeNumber”}
where
Optional String. A WHERE clause for the query filter. SQL ‘92 WHERE clause syntax on the fields in the layer is supported for most data sources.
objectids
Optional List. The object IDs of the layer or table to be queried.
start_time
Optional Datetime. The starting time to query for.
end_time
Optional Datetime. The end date to query for.
geometry_filter
Optional from arcgis.geometry.filter. Allows for the information to be filtered on spatial relationship with another geometry.
out_fields
Optional String. The list of fields to include in the return results.
return_geometry
Optional Boolean. If False, the query will not return geometries. The default is True.
return_centroid
Optional Boolean. If True, the centroid of the geometry will be added to the output.
max_allowable_offset
Optional float. This option can be used to specify the max_allowable_offset to be used for generalizing geometries returned by the query operation. The max_allowable_offset is in the units of out_sr. If out_sr is not specified, max_allowable_offset is assumed to be in the unit of the spatial reference of the layer.
out_sr
Optional Integer. The WKID for the spatial reference of the returned geometry.
geometry_precision
Optional Integer. This option can be used to specify the number of decimal places in the response geometries returned by the query operation. This applies to X and Y values only (not m or z-values).
return_ids_only
Optional boolean. Default is False. If true, the response only includes an array of object IDs. Otherwise, the response is a feature set.
return_extent_only
Optional boolean. If true, the response only includes the extent of the features that would be returned by the query. If returnCountOnly=true, the response will return both the count and the extent. The default is false. This parameter applies only if the supportsReturningQueryExtent property of the layer is true.
order_by_field
Optional Str. Optional string. One or more field names on which the features/records need to be ordered. Use ASC or DESC for ascending or descending, respectively, following every field to control the ordering. example: STATE_NAME ASC, RACE DESC, GENDER
return_z
Optional boolean. If true, Z values are included in the results if the features have Z values. Otherwise, Z values are not returned. The default is False.
return_m
Optional boolean. If true, M values are included in the results if the features have M values. Otherwise, M values are not returned. The default is false.
result_type
Optional String. The result_type can be used to control the number of features returned by the query operation. Values: none | standard | tile
as_df
Optional Boolean. If False, the result is returned as a FeatureSet. If True (default) the result is returned as a spatially enabled dataframe.
- Returns
Default - pd.DataFrame, when as_df=False returns a FeatureSet. If return_count_only is True, the return type is Integer. If the return_ids_only is True, a list of value is returned.
-
property
renderer
¶ Get/Set the Renderer of the Feature Layer. This overrides the default symbology when displaying it on a webmap.
- Returns
InsensitiveDict
-
update_metadata
(file_path)¶ Updates a Layer’s metadata from an xml file.
Argument
Description
file_path
Required String. The path to the .xml file that contains the metadata.
- Returns
boolean
-
validate_sql
(sql, sql_type='where')¶ The validate_sql operation validates an SQL-92 expression or WHERE clause. The validate_sql operation ensures that an SQL-92 expression, such as one written by a user through a user interface, is correct before performing another operation that uses the expression. For example, validateSQL can be used to validate information that is subsequently passed in as part of the where parameter of the calculate operation. validate_sql also prevents SQL injection. In addition, all table and field names used in the SQL expression or WHERE clause are validated to ensure they are valid tables and fields.
Argument
Description
sql
Required String. The SQL expression of WHERE clause to validate. Example: “Population > 300000”
sql_type
- Optional String. Three SQL types are supported in validate_sql
where (default) - Represents the custom WHERE clause the user can compose when querying a layer or using calculate.
expression - Represents an SQL-92 expression. Currently, expression is used as a default value expression when adding a new field or using the calculate API.
statement - Represents the full SQL-92 statement that can be passed directly to the database. No current ArcGIS REST API resource or operation supports using the full SQL-92 SELECT statement directly. It has been added to the validateSQL for completeness. Values: where | expression | statement
- Returns
dict
-
arcgis.features.FeatureLayerCollection¶
-
class
arcgis.features.
FeatureLayerCollection
(url, gis=None)¶ A FeatureLayerCollection is a collection of feature layers and tables, with the associated relationships among the entities.
In a web GIS, a feature layer collection is exposed as a feature service with multiple feature layers.
Instances of FeatureDatasets can be obtained from feature service Items in the GIS using FeatureLayerCollection.fromitem(item), from feature service endpoints using the constructor, or by accessing the dataset attribute of feature layer objects.
FeatureDatasets can be configured and managed using their manager helper object.
If the dataset supports the sync operation, the replicas helper object allows management and synchronization of replicas for disconnected editing of the feature layer collection.
Note: You can use the layers and tables property to get to the individual layers and tables in this feature layer collection.
-
extract_changes
(layers, servergen, queries=None, geometry=None, geometry_type=None, in_sr=None, version=None, return_inserts=False, return_updates=False, return_deletes=False, return_ids_only=False, return_extent_only=False, return_attachments=False, attachments_by_url=False, data_format='json', change_extent_grid_cell=None)¶ Feature service change tracking is an efficient change tracking mechanism for applications. Applications can use change tracking to query changes that have been made to the layers and tables in the service. For enterprise geodatabase based feature services published from ArcGIS Pro 2.2 or higher, the ChangeTracking capability requires all layers and tables to be either archive enabled or branch versioned and have globalid columns. Change tracking can also be enabled for ArcGIS Online hosted feature services. If all layers and tables in the service have the ChangeTracking capability, the extract_changes operation can be used to get changes.
-
classmethod
fromitem
(item)¶
-
property
manager
¶ helper object to manage the feature layer collection, update it’s definition, etc
-
property
properties
¶ The properties of this object
-
query
(layer_defs_filter=None, geometry_filter=None, time_filter=None, return_geometry=True, return_ids_only=False, return_count_only=False, return_z=False, return_m=False, out_sr=None)¶ queries the feature layer collection
-
query_domains
(layers)¶ The query_domains returns full domain information for the domains referenced by the layers in the feature layer collection. This operation is performed on a feature layer collection. The operation takes an array of layer IDs and returns the set of domains referenced by the layers.
Argument
Description
layers
Required List. An array of layers. The set of domains to return is based on the domains referenced by these layers. Example: [1,2,3,4]
- Returns
list of dictionaries
The Query operation is performed on a feature service layer resource. The result of this operation are feature sets grouped by source layer/table object IDs. Each feature set contains Feature objects including the values for the fields requested by the user. For related layers, if you request geometry information, the geometry of each feature is also returned in the feature set. For related tables, the feature set does not include geometries.
Argument
Description
object_ids
Optional string. the object IDs of the table/layer to be queried.
relationship_id
Optional string. The ID of the relationship to be queried.
out_fields
Optional string.the list of fields from the related table/layer to be included in the returned feature set. This list is a comma delimited list of field names. If you specify the shape field in the list of return fields, it is ignored. To request geometry, set return_geometry to true. You can also specify the wildcard “*” as the value of this parameter. In this case, the results will include all the field values.
definition_expression
Optional string. The definition expression to be applied to the related table/layer. From the list of objectIds, only those records that conform to this expression are queried for related records.
return_geometry
Optional boolean. If true, the feature set includes the geometry associated with each feature. The default is true.
max_allowable_offset
Optional float. This option can be used to specify the max_allowable_offset to be used for generalizing geometries returned by the query operation. The max_allowable_offset is in the units of the outSR. If outSR is not specified, then max_allowable_offset is assumed to be in the unit of the spatial reference of the map.
geometry_precision
Optional integer. This option can be used to specify the number of decimal places in the response geometries.
out_wkid
Optional integer. The spatial reference of the returned geometry.
gdb_version
Optional string. The geodatabase version to query. This parameter applies only if the isDataVersioned property of the layer queried is true.
return_z
Optional boolean. If true, Z values are included in the results if the features have Z values. Otherwise, Z values are not returned. The default is false.
return_m
Optional boolean. If true, M values are included in the results if the features have M values. Otherwise, M values are not returned. The default is false.
- Returns
dict
-
property
relationships
¶ The relationships property provides relationship information for the layers and tables in the feature layer collection.
The relationships resource includes information about relationship rules from the back-end relationship classes, in addition to the relationship information already found in the individual layers and tables.
Feature layer collections that support the relationships resource will have the “supportsRelationshipsResource”: true property on their properties.
- Returns
List of Dictionaries
-
upload
(path, description=None)¶ Uploads a new item to the server. Once the operation is completed successfully, the JSON structure of the uploaded item is returned.
Argument
Description
path
Optional string. Filepath of the file to upload.
description
Optional string. Descriptive text for the uploaded item.
- Returns
boolean
-
property
versions
¶ Returns a VersionManager to create, update and use versions on a FeatureLayerCollection. If versioning is not enabled on the service, None is returned.
-
arcgis.features.FeatureSet¶
-
class
arcgis.features.
FeatureSet
(features, fields=None, has_z=False, has_m=False, geometry_type=None, spatial_reference=None, display_field_name=None, object_id_field_name=None, global_id_field_name=None)¶ A set of features with information about their fields, field aliases, geometry type, spatial reference etc.
FeatureSets are commonly used as input/output with several Geoprocessing Tools, and can be the obtained through the query() methods of feature layers. A FeatureSet can be combined with a layer definition to compose a FeatureCollection.
FeatureSet contains Feature objects, including the values for the fields requested by the user. For layers, if you request geometry information, the geometry of each feature is also returned in the FeatureSet. For tables, the FeatureSet does not include geometries.
If a Spatial Reference is not specified at the FeatureSet level, the FeatureSet will assume the SpatialReference of its first feature. If the SpatialReference of the first feature is also not specified, the spatial reference will be UnknownCoordinateSystem.
-
property
df
¶ deprecated in v1.5.0 please use `sdf`
converts the FeatureSet to a Pandas dataframe. Requires pandas
-
property
display_field_name
¶ gets/sets the displayFieldName
-
property
features
¶ gets the features in the FeatureSet
-
property
fields
¶ gets the fields in the FeatureSet
-
static
from_dataframe
(df)¶ returns a featureset from a Pandas’ Data or Spatial DataFrame
-
static
from_dict
(featureset_dict)¶ returns a featureset from a dict
-
static
from_geojson
(geojson)¶ Converts a GeoJSON Feature Collection into a FeatureSet
-
static
from_json
(json_str)¶ returns a featureset from a JSON string
-
property
geometry_type
¶ gets/sets the geometry Type
-
property
global_id_field_name
¶ gets/sets the globalIdFieldName
-
property
has_m
¶ gets/set the M-property
-
property
has_z
¶ gets/sets the Z-property
-
property
object_id_field_name
¶ gets/sets the object id field
-
save
(save_location, out_name, encoding=None)¶ Saves a featureset object to a feature class
Argument
Description
save_location
Required string. Path to export the FeatureSet to.
out_name
Required string. Name of the saved table.
encoding
Optional string. character encoding is used to represent a repertoire of characters by some kind of encoding system. The default is None.
- Returns
string
-
property
sdf
¶ Converts the FeatureSet to a Spatially Enabled Pandas dataframe
-
property
spatial_reference
¶ gets the featureset’s spatial reference
-
to_dict
()¶ converts the object to Python dictionary
-
property
to_geojson
¶ converts the object to GeoJSON
-
property
to_json
¶ converts the object to JSON
-
property
value
¶ returns object as dictionary
-
property
arcgis.features.FeatureCollection¶
-
class
arcgis.features.
FeatureCollection
(dictdata)¶ FeatureCollection is an object with a layer definition and a feature set.
It is an in-memory collection of features with rendering information.
Feature Collections can be stored as Items in the GIS, added as layers to a map or scene, passed as inputs to feature analysis tools, and returned as results from feature analysis tools if an output name for a feature layer is not specified when calling the tool.
-
static
from_featureset
(fset, symbol=None, name=None)¶ Create a FeatureCollection object from a FeatureSet object.
- Returns
A FeatureCollection object.
-
query
()¶ Returns the data in this feature collection as a FeatureSet. Filtering by where clause is not supported for feature collections
-
static
arcgis.features.GeoAccessor¶
-
class
arcgis.features.
GeoAccessor
(obj)¶ The DataFrame Accessor is a namespace that performs dataset operations. This includes visualization, spatial indexing, IO and dataset level properties.
-
property
area
¶ Returns the total area of the dataframe
- Returns
float
>>> df.spatial.area 143.23427
-
property
bbox
¶ Returns the total length of the dataframe
- Returns
Polygon
>>> df.spatial.bbox {'rings' : [[[1,2], [2,3], [3,3],....]], 'spatialReference' {'wkid': 4326}}
-
property
centroid
¶ Returns the centroid of the dataframe
- Returns
Geometry
>>> df.spatial.centroid (-14.23427, 39)
-
distance_matrix
(leaf_size=16, rebuild=False)¶ Creates a k-d tree to calculate the nearest-neighbor problem.
requires scipy
Argument
Description
leafsize
Optional Integer. The number of points at which the algorithm switches over to brute-force. Default: 16.
rebuild
Optional Boolean. If True, the current KDTree is erased. If false, any KD-Tree that exists will be returned.
- Returns
scipy’s KDTree class
-
static
from_df
(df, address_column='address', geocoder=None, sr=None, geometry_column=None)¶ Returns a SpatialDataFrame from a dataframe with an address column.
Argument
Description
df
Required Pandas DataFrame. Source dataset
address_column
Optional String. The default is “address”. This is the name of a column in the specified dataframe that contains addresses (as strings). The addresses are batch geocoded using the GIS’s first configured geocoder and their locations used as the geometry of the spatial dataframe. Ignored if the ‘geometry_column’ is specified.
geocoder
Optional Geocoder. The geocoder to be used. If not specified, the active GIS’s first geocoder is used.
sr
Optional integer. The WKID of the spatial reference.
geometry_column
Optional String. The name of the geometry column to convert to the arcgis.Geometry Objects (new at version 1.8.1)
- Returns
DataFrame
NOTE: Credits will be consumed for batch_geocoding, from the GIS to which the geocoder belongs.
-
static
from_featureclass
(location, **kwargs)¶ Returns a Spatially enabled pandas.DataFrame from a feature class.
Argument
Description
location
Required string or pathlib.Path. Full path to the feature class
Optional parameters when ArcPy library is available in the current environment:
Optional Argument
Description
sql_clause
sql clause to parse data down. To learn more see ArcPy Search Cursor
where_clause
where statement. To learn more see ArcPy SQL reference
fields
list of strings specifying the field names.
spatial_filter
A Geometry object that will filter the results. This requires arcpy to work.
- Returns
pandas.core.frame.DataFrame
-
static
from_geodataframe
(geo_df, inplace=False, column_name='SHAPE')¶ Import Geopandas GeoDataFrame into an ArcGIS Spatially enabled DataFrame. Requires geopandas library be installed in current environment.
Argument
Description
geo_df
GeoDataFrame object, created using GeoPandas library
inplace
- Optional Bool. When True, the existing GeoDataFrame is spatially
enabled and returned. When False, a new Spatially Enabled DataFrame object is returned. Default is False.
column_name
- Optional String. Sets the name of the geometry column. Default
is SHAPE.
- Returns
ArcGIS Spatially Enabled DataFrame object.
-
static
from_layer
(layer)¶ Imports a FeatureLayer to a Spatially Enabled DataFrame
This operation converts a FeatureLayer or TableLayer to a Pandas’ DataFrame
Argument
Description
layer
Required FeatureLayer or TableLayer. The service to convert to a Spatially enabled DataFrame.
Usage:
>>> from arcgis.features import FeatureLayer >>> mylayer = FeatureLayer(("https://sampleserver6.arcgisonline.com/arcgis/rest" "/services/CommercialDamageAssessment/FeatureServer/0")) >>> df = from_layer(mylayer) >>> print(df.head())
- Returns
Pandas’ DataFrame
-
static
from_table
(filename, **kwargs)¶ Allows a user to read from a non-spatial table
Note: ArcPy is Required for this method
Argument
Description
filename
Required string or pathlib.Path. The path to the table.
Keyword Arguments
Argument
Description
fields
Optional List/Tuple. A list (or tuple) of field names. For a single field, you can use a string instead of a list of strings.
Use an asterisk (*) instead of a list of fields if you want to access all fields from the input table (raster and BLOB fields are excluded). However, for faster performance and reliable field order, it is recommended that the list of fields be narrowed to only those that are actually needed.
Geometry, raster, and BLOB fields are not supported.
where
Optional String. An optional expression that limits the records returned.
skip_nulls
Optional Boolean. This controls whether records using nulls are skipped.
null_value
Optional String/Integer/Float. Replaces null values from the input with a new value.
- Returns
pd.DataFrame
-
static
from_xy
(df, x_column, y_column, sr=4326)¶ Converts a Pandas DataFrame into a Spatial DataFrame by providing the X/Y columns.
Argument
Description
df
Required Pandas DataFrame. Source dataset
x_column
Required string. The name of the X-coordinate series
y_column
Required string. The name of the Y-coordinate series
sr
Optional int. The wkid number of the spatial reference. 4326 is the default value.
- Returns
DataFrame
-
property
full_extent
¶ Returns the extent of the dataframe
- Returns
tuple
>>> df.spatial.full_extent (-118, 32, -97, 33)
-
property
geometry_type
¶ Returns a list Geometry Types for the DataFrame
-
property
has_m
¶ Returns a boolean that determines if the datasets have Z values
- Returns
Boolean
-
property
has_z
¶ Returns a boolean that determines if the datasets have Z values
- Returns
Boolean
-
join
(right_df, how='inner', op='intersects', left_tag='left', right_tag='right')¶ Joins the current DataFrame to another spatially enabled dataframes based on spatial location based.
Note
requires the SEDF to be in the same coordinate system
Argument
Description
right_df
Required pd.DataFrame. Spatially enabled dataframe to join.
how
Required string. The type of join:
left - use keys from current dataframe and retains only current geometry column
right - use keys from right_df; retain only right_df geometry column
inner - use intersection of keys from both dfs and retain only current geometry column
op
Required string. The operation to use to perform the join. The default is intersects.
supported perations: intersects, within, and contains
left_tag
Optional String. If the same column is in the left and right dataframe, this will append that string value to the field.
right_tag
Optional String. If the same column is in the left and right dataframe, this will append that string value to the field.
- Returns
Spatially enabled Pandas’ DataFrame
-
property
length
¶ Returns the total length of the dataframe
- Returns
float
>>> df.spatial.length 1.23427
-
property
name
¶ returns the name of the geometry column
-
overlay
(sdf, op='union')¶ Performs spatial operation operations on two spatially enabled dataframes.
requires ArcPy or Shapely
Argument
Description
sdf
Required Spatially Enabled DataFrame. The geometry to perform the operation from.
op
Optional String. The spatial operation to perform. The allowed value are: union, erase, identity, intersection. union is the default operation.
- Returns
Spatially enabled DataFrame (pd.DataFrame)
-
plot
(map_widget=None, **kwargs)¶ Plot draws the data on a web map. The user can describe in simple terms how to renderer spatial data using symbol. To make the process simplier a pallette for which colors are drawn from can be used instead of explicit colors.
Explicit Argument
Description
map_widget
optional WebMap object. This is the map to display the data on.
palette
optional string/dict. Color mapping. For simple renderer, just provide a string. For more robust renderers like unique renderer, a dictionary can be given.
renderer_type
optional string. Determines the type of renderer to use for the provided dataset. The default is ‘s’ which is for simple renderers.
Allowed values:
‘s’ - is a simple renderer that uses one symbol only.
- ‘u’ - unique renderer symbolizes features based on one
or more matching string attributes.
- ‘c’ - A class breaks renderer symbolizes based on the
value of some numeric attribute.
- ‘h’ - heatmap renders point data into a raster
visualization that emphasizes areas of higher density or weighted values.
symbol_type
optional string. This is the type of symbol the user needs to create. Valid inputs are: simple, picture, text, or carto. The default is simple.
symbol_type
optional string. This is the symbology used by the geometry. For example ‘s’ for a Line geometry is a solid line. And ‘-‘ is a dash line.
Allowed symbol types based on geometries:
Point Symbols
‘o’ - Circle (default)
‘+’ - Cross
‘D’ - Diamond
‘s’ - Square
‘x’ - X
Polyline Symbols
‘s’ - Solid (default)
‘-‘ - Dash
‘-.’ - Dash Dot
‘-..’ - Dash Dot Dot
‘.’ - Dot
‘–’ - Long Dash
‘–.’ - Long Dash Dot
‘n’ - Null
‘s-‘ - Short Dash
‘s-.’ - Short Dash Dot
‘s-..’ - Short Dash Dot Dot
‘s.’ - Short Dot
Polygon Symbols
‘s’ - Solid Fill (default)
‘’ - Backward Diagonal
‘/’ - Forward Diagonal
‘|’ - Vertical Bar
‘-‘ - Horizontal Bar
‘x’ - Diagonal Cross
‘+’ - Cross
col
optional string/list. Field or fields used for heatmap, class breaks, or unique renderers.
pallette
optional string. The color map to draw from in order to visualize the data. The default pallette is ‘jet’. To get a visual representation of the allowed color maps, use the display_colormaps method.
alpha
optional float. This is a value between 0 and 1 with 1 being the default value. The alpha sets the transparancy of the renderer when applicable.
** Render Syntax **
The render syntax allows for users to fully customize symbolizing the data.
** Simple Renderer**
A simple renderer is a renderer that uses one symbol only.
Optional Argument
Description
symbol_type
optional string. This is the type of symbol the user needs to create. Valid inputs are: simple, picture, text, or carto. The default is simple.
symbol_type
optional string. This is the symbology used by the geometry. For example ‘s’ for a Line geometry is a solid line. And ‘-‘ is a dash line.
Point Symbols
‘o’ - Circle (default)
‘+’ - Cross
‘D’ - Diamond
‘s’ - Square
‘x’ - X
Polyline Symbols
‘s’ - Solid (default)
‘-‘ - Dash
‘-.’ - Dash Dot
‘-..’ - Dash Dot Dot
‘.’ - Dot
‘–’ - Long Dash
‘–.’ - Long Dash Dot
‘n’ - Null
‘s-‘ - Short Dash
‘s-.’ - Short Dash Dot
‘s-..’ - Short Dash Dot Dot
‘s.’ - Short Dot
Polygon Symbols
‘s’ - Solid Fill (default)
‘’ - Backward Diagonal
‘/’ - Forward Diagonal
‘|’ - Vertical Bar
‘-‘ - Horizontal Bar
‘x’ - Diagonal Cross
‘+’ - Cross
description
Description of the renderer.
rotation_expression
A constant value or an expression that derives the angle of rotation based on a feature attribute value. When an attribute name is specified, it’s enclosed in square brackets.
rotation_type
String value which controls the origin and direction of rotation on point features. If the rotationType is defined as arithmetic, the symbol is rotated from East in a counter-clockwise direction where East is the 0 degree axis. If the rotationType is defined as geographic, the symbol is rotated from North in a clockwise direction where North is the 0 degree axis.
Must be one of the following values:
arithmetic
geographic
visual_variables
An array of objects used to set rendering properties.
Heatmap Renderer
The HeatmapRenderer renders point data into a raster visualization that emphasizes areas of higher density or weighted values.
Optional Argument
Description
blur_radius
The radius (in pixels) of the circle over which the majority of each point’s value is spread.
field
This is optional as this renderer can be created if no field is specified. Each feature gets the same value/importance/weight or with a field where each feature is weighted by the field’s value.
max_intensity
The pixel intensity value which is assigned the final color in the color ramp.
min_intensity
The pixel intensity value which is assigned the initial color in the color ramp.
ratio
A number between 0-1. Describes what portion along the gradient the colorStop is added.
Unique Renderer
This renderer symbolizes features based on one or more matching string attributes.
Optional Argument
Description
background_fill_symbol
A symbol used for polygon features as a background if the renderer uses point symbols, e.g. for bivariate types & size rendering. Only applicable to polygon layers. PictureFillSymbols can also be used outside of the Map Viewer for Size and Predominance and Size renderers.
default_label
Default label for the default symbol used to draw unspecified values.
default_symbol
Symbol used when a value cannot be matched.
field1, field2, field3
Attribute field renderer uses to match values.
field_delimiter
String inserted between the values if multiple attribute fields are specified.
rotation_expression
A constant value or an expression that derives the angle of rotation based on a feature attribute value. When an attribute name is specified, it’s enclosed in square brackets. Rotation is set using a visual variable of type rotation info with a specified field or value expression property.
rotation_type
String property which controls the origin and direction of rotation. If the rotation type is defined as arithmetic the symbol is rotated from East in a counter-clockwise direction where East is the 0 degree axis. If the rotation type is defined as geographic, the symbol is rotated from North in a clockwise direction where North is the 0 degree axis. Must be one of the following values:
arithmetic
geographic
arcade_expression
An Arcade expression evaluating to either a string or a number.
arcade_title
The title identifying and describing the associated Arcade expression as defined in the valueExpression property.
visual_variables
An array of objects used to set rendering properties.
Class Breaks Renderer
A class breaks renderer symbolizes based on the value of some numeric attribute.
Optional Argument
Description
background_fill_symbol
A symbol used for polygon features as a background if the renderer uses point symbols, e.g. for bivariate types & size rendering. Only applicable to polygon layers. PictureFillSymbols can also be used outside of the Map Viewer for Size and Predominance and Size renderers.
default_label
Default label for the default symbol used to draw unspecified values.
default_symbol
Symbol used when a value cannot be matched.
method
Determines the classification method that was used to generate class breaks.
Must be one of the following values:
esriClassifyDefinedInterval
esriClassifyEqualInterval
esriClassifyGeometricalInterval
esriClassifyNaturalBreaks
esriClassifyQuantile
esriClassifyStandardDeviation
esriClassifyManual
field
Attribute field used for renderer.
min_value
The minimum numeric data value needed to begin class breaks.
normalization_field
Used when normalizationType is field. The string value indicating the attribute field by which the data value is normalized.
normalization_total
Used when normalizationType is percent-of-total, this number property contains the total of all data values.
normalization_type
Determine how the data was normalized.
Must be one of the following values:
esriNormalizeByField
esriNormalizeByLog
esriNormalizeByPercentOfTotal
rotation_expression
A constant value or an expression that derives the angle of rotation based on a feature attribute value. When an attribute name is specified, it’s enclosed in square brackets.
rotation_type
A string property which controls the origin and direction of rotation. If the rotation_type is defined as arithmetic, the symbol is rotated from East in a couter-clockwise direction where East is the 0 degree axis. If the rotationType is defined as geographic, the symbol is rotated from North in a clockwise direction where North is the 0 degree axis.
Must be one of the following values:
arithmetic
geographic
arcade_expression
An Arcade expression evaluating to a number.
arcade_title
The title identifying and describing the associated Arcade expression as defined in the arcade_expression property.
visual_variables
An object used to set rendering options.
** Symbol Syntax **
Optional Argument
Description
symbol_type
optional string. This is the type of symbol the user needs to create. Valid inputs are: simple, picture, text, or carto. The default is simple.
symbol_type
optional string. This is the symbology used by the geometry. For example ‘s’ for a Line geometry is a solid line. And ‘-‘ is a dash line.
Point Symbols
‘o’ - Circle (default)
‘+’ - Cross
‘D’ - Diamond
‘s’ - Square
‘x’ - X
Polyline Symbols
‘s’ - Solid (default)
‘-‘ - Dash
‘-.’ - Dash Dot
‘-..’ - Dash Dot Dot
‘.’ - Dot
‘–’ - Long Dash
‘–.’ - Long Dash Dot
‘n’ - Null
‘s-‘ - Short Dash
‘s-.’ - Short Dash Dot
‘s-..’ - Short Dash Dot Dot
‘s.’ - Short Dot
Polygon Symbols
‘s’ - Solid Fill (default)
‘’ - Backward Diagonal
‘/’ - Forward Diagonal
‘|’ - Vertical Bar
‘-‘ - Horizontal Bar
‘x’ - Diagonal Cross
‘+’ - Cross
cmap
optional string or list. This is the color scheme a user can provide if the exact color is not needed, or a user can provide a list with the color defined as: [red, green blue, alpha]. The values red, green, blue are from 0-255 and alpha is a float value from 0 - 1. The default value is ‘jet’ color scheme.
cstep
optional integer. If provided, its the color location on the color scheme.
Simple Symbols
This is a list of optional parameters that can be given for point, line or polygon geometries.
Argument
Description
marker_size
optional float. Numeric size of the symbol given in points.
marker_angle
optional float. Numeric value used to rotate the symbol. The symbol is rotated counter-clockwise. For example, The following, angle=-30, in will create a symbol rotated -30 degrees counter-clockwise; that is, 30 degrees clockwise.
marker_xoffset
Numeric value indicating the offset on the x-axis in points.
marker_yoffset
Numeric value indicating the offset on the y-axis in points.
line_width
optional float. Numeric value indicating the width of the line in points
outline_style
Optional string. For polygon point, and line geometries , a customized outline type can be provided.
Allowed Styles:
‘s’ - Solid (default)
‘-‘ - Dash
‘-.’ - Dash Dot
‘-..’ - Dash Dot Dot
‘.’ - Dot
‘–’ - Long Dash
‘–.’ - Long Dash Dot
‘n’ - Null
‘s-‘ - Short Dash
‘s-.’ - Short Dash Dot
‘s-..’ - Short Dash Dot Dot
‘s.’ - Short Dot
outline_color
optional string or list. This is the same color as the cmap property, but specifically applies to the outline_color.
Picture Symbol
This type of symbol only applies to Points, MultiPoints and Polygons.
Argument
Description
marker_angle
Numeric value that defines the number of degrees ranging from 0-360, that a marker symbol is rotated. The rotation is from East in a counter-clockwise direction where East is the 0 axis.
marker_xoffset
Numeric value indicating the offset on the x-axis in points.
marker_yoffset
Numeric value indicating the offset on the y-axis in points.
height
Numeric value used if needing to resize the symbol. Specify a value in points. If images are to be displayed in their original size, leave this blank.
width
Numeric value used if needing to resize the symbol. Specify a value in points. If images are to be displayed in their original size, leave this blank.
url
String value indicating the URL of the image. The URL should be relative if working with static layers. A full URL should be used for map service dynamic layers. A relative URL can be dereferenced by accessing the map layer image resource or the feature layer image resource.
image_data
String value indicating the base64 encoded data.
xscale
Numeric value indicating the scale factor in x direction.
yscale
Numeric value indicating the scale factor in y direction.
outline_color
optional string or list. This is the same color as the cmap property, but specifically applies to the outline_color.
outline_style
Optional string. For polygon point, and line geometries , a customized outline type can be provided.
Allowed Styles:
‘s’ - Solid (default)
‘-‘ - Dash
‘-.’ - Dash Dot
‘-..’ - Dash Dot Dot
‘.’ - Dot
‘–’ - Long Dash
‘–.’ - Long Dash Dot
‘n’ - Null
‘s-‘ - Short Dash
‘s-.’ - Short Dash Dot
‘s-..’ - Short Dash Dot Dot
‘s.’ - Short Dot
outline_color
optional string or list. This is the same color as the cmap property, but specifically applies to the outline_color.
line_width
optional float. Numeric value indicating the width of the line in points
Text Symbol
This type of symbol only applies to Points, MultiPoints and Polygons.
Argument
Description
font_decoration
The text decoration. Must be one of the following values: - line-through - underline - none
font_family
Optional string. The font family.
font_size
Optional float. The font size in points.
font_style
Optional string. The text style. - italic - normal - oblique
font_weight
Optional string. The text weight. Must be one of the following values: - bold - bolder - lighter - normal
background_color
optional string/list. Background color is represented as a four-element array or string of a color map.
halo_color
Optional string/list. Color of the halo around the text. The default is None.
halo_size
Optional integer/float. The point size of a halo around the text symbol.
horizontal_alignment
optional string. One of the following string values representing the horizontal alignment of the text. Must be one of the following values: - left - right - center - justify
kerning
optional boolean. Boolean value indicating whether to adjust the spacing between characters in the text string.
line_color
optional string/list. Outline color is represented as a four-element array or string of a color map.
line_width
optional integer/float. Outline size.
marker_angle
optional int. A numeric value that defines the number of degrees (0 to 360) that a text symbol is rotated. The rotation is from East in a counter-clockwise direction where East is the 0 axis.
marker_xoffset
optional int/float.Numeric value indicating the offset on the x-axis in points.
marker_yoffset
optional int/float.Numeric value indicating the offset on the x-axis in points.
right_to_left
optional boolean. Set to true if using Hebrew or Arabic fonts.
rotated
optional boolean. Boolean value indicating whether every character in the text string is rotated.
text
Required string. Text Value to display next to geometry.
vertical_alignment
Optional string. One of the following string values representing the vertical alignment of the text. Must be one of the following values: - top - bottom - middle - baseline
Cartographic Symbol
This type of symbol only applies to line geometries.
Argument
Description
line_width
optional float. Numeric value indicating the width of the line in points
cap
Optional string. The cap style.
join
Optional string. The join style.
miter_limit
Optional string. Size threshold for showing mitered line joins.
The kwargs parameter accepts all parameters of the create_symbol method and the create_renderer method.
-
project
(spatial_reference, transformation_name=None)¶ Reprojects the who dataset into a new spatial reference. This is an inplace operation meaning that it will update the defined geometry column from the set_geometry.
This requires ArcPy or pyproj v4
Argument
Description
spatial_reference
Required SpatialReference. The new spatial reference. This can be a SpatialReference object or the coordinate system name.
transformation_name
Optional String. The geotransformation name.
- Returns
boolean
-
relationship
(other, op, relation=None)¶ This method allows for dataframe to dataframe compairson using spatial relationships. The return is a pd.DataFrame that meet the operations’ requirements.
Argument
Description
sdf
Required Spatially Enabled DataFrame. The geometry to perform the operation from.
op
Optional String. The spatial operation to perform. The allowed value are: contains,crosses,disjoint,equals, overlaps,touches, or within.
contains - Indicates if the base geometry contains the comparison geometry.
crosses - Indicates if the two geometries intersect in a geometry of a lesser shape type.
disjoint - Indicates if the base and comparison geometries share no points in common.
equals - Indicates if the base and comparison geometries are of the same shape type and define the same set of points in the plane. This is a 2D comparison only; M and Z values are ignored.
overlaps - Indicates if the intersection of the two geometries has the same shape type as one of the input geometries and is not equivalent to either of the input geometries.
touches - Indicates if the boundaries of the geometries intersect.
within - Indicates if the base geometry is within the comparison geometry.
relation
Optional String. The spatial relationship type. The allowed values are: BOUNDARY, CLEMENTINI, and PROPER.
BOUNDARY - Relationship has no restrictions for interiors or boundaries.
CLEMENTINI - Interiors of geometries must intersect. This is the default.
PROPER - Boundaries of geometries must not intersect.
This only applies to contains,
- Returns
Spatially enabled DataFrame (pd.DataFrame)
-
property
renderer
¶ Returns the renderer for the SeDF
- Returns
InsensitiveDict
-
sanitize_column_names
(convert_to_string=True, remove_special_char=True, inplace=False)¶ Cleans column names by converting them to string, removing special characters, renaming columns without column names to ‘noname’ and renaming duplicates with integer suffixes.
Argument
Description
convert_to_string
Optional Boolean. Default is True. Converts column names to string
remove_special_char
Optional Boolean. Default is True. Removes any characters in column names that are not numeric or underscores.
inplace
Optional Boolean. Default is False. If True, edits the DataFrame in place and returns Nothing. If False, returns a new DataFrame object.
- Returns
pd.DataFrame object if inplace=False. Else None.
-
select
(other)¶ This operation performs a dataset wide selection by geometric intersection. A geometry or another Spatially enabled DataFrame can be given and select will return all rows that intersect that input geometry. The select operation uses a spatial index to complete the task, so if it is not built before the first run, the function will build a quadtree index on the fly.
requires ArcPy or Shapely
- Returns
pd.DataFrame (spatially enabled)
-
set_geometry
(col, sr=None)¶ Assigns the Geometry Column by Name or by List
-
sindex
(stype='quadtree', reset=False, **kwargs)¶ Creates a spatial index for the given dataset.
By default the spatial index is a QuadTree spatial index.
If r-tree indexes should be used for large datasets. This will allow users to create very large out of memory indexes. To use r-tree indexes, the r-tree library must be installed. To do so, install via conda using the following command: conda install -c conda-forge rtree
-
property
sr
¶ gets/sets the spatial reference of the dataframe
-
to_feature_collection
(name=None, drawing_info=None, extent=None, global_id_field=None)¶ Converts a spatially enabled pd.DataFrame to a Feature Collection
optional argument
Description
name
optional string. Name of the Feature Collection
drawing_info
Optional dictionary. This is the rendering information for a Feature Collection. Rendering information is a dictionary with the symbology, labelling and other properties defined. See: http://resources.arcgis.com/en/help/arcgis-rest-api/index.html#/Renderer_objects/02r30000019t000000/
extent
Optional dictionary. If desired, a custom extent can be provided to set where the map starts up when showing the data. The default is the full extent of the dataset in the Spatial DataFrame.
global_id_field
Optional string. The Global ID field of the dataset.
- Returns
FeatureCollection object
-
to_featureclass
(location, overwrite=True, has_z=None, has_m=None)¶ Exports a geo enabled dataframe to a feature class.
Argument
Description
location
Required string. The output of the table.
overwrite
Optional Boolean. If True and if the feature class exists, it will be deleted and overwritten. This is default. If False, the feature class and the feature class exists, and exception will be raised.
has_z
Optional Boolean. If True, the dataset will be forced to have Z based geometries. If a geometry is missing a Z value when true, a RuntimeError will be raised. When False, the API will not use the Z value.
has_m
Optional Boolean. If True, the dataset will be forced to have M based geometries. If a geometry is missing a M value when true, a RuntimeError will be raised. When False, the API will not use the M value.
- Returns
String
-
to_featurelayer
(title, gis=None, tags=None, folder=None)¶ publishes a spatial dataframe to a new feature layer
Argument
Description
title
Required string. The name of the service
gis
Optional GIS. The GIS connection object
tags
Optional list of strings. A comma seperated list of descriptive words for the service.
folder
Optional string. Name of the folder where the featurelayer item and imported data would be stored.
- Returns
FeatureLayer
-
to_featureset
()¶ Converts a spatial dataframe to a feature set object
-
to_table
(location, overwrite=True)¶ Exports a geo enabled dataframe to a table.
Argument
Description
location
Required string. The output of the table.
overwrite
Optional Boolean. If True and if the table exists, it will be deleted and overwritten. This is default. If False, the table and the table exists, and exception will be raised.
- Returns
String
-
property
true_centroid
¶ Returns the true centroid of the dataframe
- Returns
Geometry
>>> df.spatial.true_centroid (1.23427, 34)
-
validate
(strict=False)¶ Determines if the Geo Accessor is Valid with Geometries in all values
-
voronoi
()¶ Generates a voronoi diagram on the whole dataset. If the geometry is not a Point then the centroid is used for the geometry. The result is a polygon GeoArray Series that matches 1:1 to the original dataset.
requires scipy
- Returns
pd.Series
-
property
arcgis.features.GeoSeriesAccessor¶
-
class
arcgis.features.
GeoSeriesAccessor
(obj)¶ -
property
JSON
¶ Returns JSON string of Geometry
- Returns
Series of strings
-
property
WKB
¶ Returns the Geometry as WKB
- Returns
Series of Bytes
-
property
WKT
¶ Returns the Geometry as WKT
- Returns
Series of String
-
angle_distance_to
(second_geometry, method='GEODESIC')¶ Returns a tuple of angle and distance to another point using a measurement type.
Argument
Description
second_geometry
Required Geometry. A arcgis.Geometry object.
method
Optional String. PLANAR measurements reflect the projection of geographic data onto the 2D surface (in other words, they will not take into account the curvature of the earth). GEODESIC, GREAT_ELLIPTIC, LOXODROME, and PRESERVE_SHAPE measurement types may be chosen as an alternative, if desired.
- Returns
a tuple of angle and distance to another point using a measurement type.
-
property
area
¶ Returns the features area
- Returns
float in a series
-
property
as_arcpy
¶ Returns the features as ArcPy Geometry
- Returns
arcpy.Geometry in a series
-
property
as_shapely
¶ Returns the features as Shapely Geometry
- Returns
shapely.Geometry in a series
-
boundary
()¶ Constructs the boundary of the geometry.
- Returns
arcgis.geometry.Polyline
-
buffer
(distance)¶ Constructs a polygon at a specified distance from the geometry.
Argument
Description
distance
Required float. The buffer distance. The buffer distance is in the same units as the geometry that is being buffered. A negative distance can only be specified against a polygon geometry.
- Returns
arcgis.geometry.Polygon
-
property
centroid
¶ Returns the feature’s centroid
- Returns
tuple (x,y) in series
-
clip
(envelope)¶ Constructs the intersection of the geometry and the specified extent.
Argument
Description
envelope
required tuple. The tuple must have (XMin, YMin, XMax, YMax) each value represents the lower left bound and upper right bound of the extent.
- Returns
output geometry clipped to extent
-
contains
(second_geometry, relation=None)¶ Indicates if the base geometry contains the comparison geometry.
Argument
Description
second_geometry
Required arcgis.geometry.Geometry. A second geometry
relation
Optional string. The spatial relationship type.
BOUNDARY - Relationship has no restrictions for interiors or boundaries.
CLEMENTINI - Interiors of geometries must intersect. Specifying CLEMENTINI is equivalent to specifying None. This is the default.
PROPER - Boundaries of geometries must not intersect.
- Returns
boolean
-
convex_hull
()¶ Constructs the geometry that is the minimal bounding polygon such that all outer angles are convex.
-
crosses
(second_geometry)¶ Indicates if the two geometries intersect in a geometry of a lesser shape type.
Argument
Description
second_geometry
Required arcgis.geometry.Geometry. A second geometry
- Returns
boolean
-
cut
(cutter)¶ Splits this geometry into a part left of the cutting polyline, and a part right of it.
Argument
Description
cutter
Required Polyline. The cuttin polyline geometry
- Returns
a list of two geometries
-
densify
(method, distance, deviation)¶ Creates a new geometry with added vertices
Argument
Description
method
Required String. The type of densification, DISTANCE, ANGLE, or GEODESIC
distance
Required float. The maximum distance between vertices. The actual distance between vertices will usually be less than the maximum distance as new vertices will be evenly distributed along the original segment. If using a type of DISTANCE or ANGLE, the distance is measured in the units of the geometry’s spatial reference. If using a type of GEODESIC, the distance is measured in meters.
deviation
Required float. Densify uses straight lines to approximate curves. You use deviation to control the accuracy of this approximation. The deviation is the maximum distance between the new segment and the original curve. The smaller its value, the more segments will be required to approximate the curve.
- Returns
arcgis.geometry.Geometry
-
difference
(second_geometry)¶ Constructs the geometry that is composed only of the region unique to the base geometry but not part of the other geometry. The following illustration shows the results when the red polygon is the source geometry.
Argument
Description
second_geometry
Required arcgis.geometry.Geometry. A second geometry
- Returns
arcgis.geometry.Geometry
-
disjoint
(second_geometry)¶ Indicates if the base and comparison geometries share no points in common.
Argument
Description
second_geometry
Required arcgis.geometry.Geometry. A second geometry
- Returns
boolean
-
distance_to
(second_geometry)¶ Returns the minimum distance between two geometries. If the geometries intersect, the minimum distance is 0. Both geometries must have the same projection.
Argument
Description
second_geometry
Required arcgis.geometry.Geometry. A second geometry
- Returns
float
-
equals
(second_geometry)¶ Indicates if the base and comparison geometries are of the same shape type and define the same set of points in the plane. This is a 2D comparison only; M and Z values are ignored.
Argument
Description
second_geometry
Required arcgis.geometry.Geometry. A second geometry
- Returns
boolean
-
property
extent
¶ Returns the feature’s extent
- Returns
tuple (xmin,ymin,xmax,ymax) in series
-
property
first_point
¶ Returns the feature’s first point
- Returns
Geometry
-
generalize
(max_offset)¶ Creates a new simplified geometry using a specified maximum offset tolerance. This only works on Polylines and Polygons.
Argument
Description
max_offset
Required float. The maximum offset tolerance.
- Returns
arcgis.geometry.Geometry
-
property
geoextent
¶ A returns the geometry’s extents
- Returns
Series of Floats
-
property
geometry_type
¶ returns the geometry types
- Returns
Series of strings
-
get_area
(method, units=None)¶ Returns the area of the feature using a measurement type.
Argument
Description
method
Required String. PLANAR measurements reflect the projection of geographic data onto the 2D surface (in other words, they will not take into account the curvature of the earth). GEODESIC, GREAT_ELLIPTIC, LOXODROME, and PRESERVE_SHAPE measurement types may be chosen as an alternative, if desired.
units
Optional String. Areal unit of measure keywords: ACRES | ARES | HECTARES | SQUARECENTIMETERS | SQUAREDECIMETERS | SQUAREINCHES | SQUAREFEET | SQUAREKILOMETERS | SQUAREMETERS | SQUAREMILES | SQUAREMILLIMETERS | SQUAREYARDS
- Returns
float
-
get_length
(method, units)¶ Returns the length of the feature using a measurement type.
Argument
Description
method
Required String. PLANAR measurements reflect the projection of geographic data onto the 2D surface (in other words, they will not take into account the curvature of the earth). GEODESIC, GREAT_ELLIPTIC, LOXODROME, and PRESERVE_SHAPE measurement types may be chosen as an alternative, if desired.
units
Required String. Linear unit of measure keywords: CENTIMETERS | DECIMETERS | FEET | INCHES | KILOMETERS | METERS | MILES | MILLIMETERS | NAUTICALMILES | YARDS
- Returns
float
-
get_part
(index=None)¶ Returns an array of point objects for a particular part of geometry or an array containing a number of arrays, one for each part.
requires arcpy
Argument
Description
index
Required Integer. The index position of the geometry.
- Returns
arcpy.Array
-
property
has_m
¶ Determines if the geometry has a M value
- Returns
Series of Boolean
-
property
has_z
¶ Determines if the geometry has a Z value
- Returns
Series of Boolean
-
property
hull_rectangle
¶ A space-delimited string of the coordinate pairs of the convex hull
- Returns
Series of strings
-
intersect
(second_geometry, dimension=1)¶ Constructs a geometry that is the geometric intersection of the two input geometries. Different dimension values can be used to create different shape types. The intersection of two geometries of the same shape type is a geometry containing only the regions of overlap between the original geometries.
Argument
Description
second_geometry
Required arcgis.geometry.Geometry. A second geometry
dimension
Required Integer. The topological dimension (shape type) of the resulting geometry.
1 -A zero-dimensional geometry (point or multipoint).
2 -A one-dimensional geometry (polyline).
4 -A two-dimensional geometry (polygon).
- Returns
boolean
-
property
is_empty
¶ Returns True/False if feature is empty
- Returns
Series of Booleans
-
property
is_multipart
¶ Returns True/False if features has multiple parts
- Returns
Series of Booleans
-
property
is_valid
¶ Returns True/False if features geometry is valid
- Returns
Series of Booleans
-
property
label_point
¶ Returns the geometry point for the optimal label location
- Returns
Series of Geometries
-
property
last_point
¶ Returns the Geometry of the last point in a feature.
- Returns
Series of Geometry
-
property
length
¶ Returns the length of the features
- Returns
Series of float
-
property
length3D
¶ Returns the length of the features
- Returns
Series of float
-
measure_on_line
(second_geometry, as_percentage=False)¶ Returns a measure from the start point of this line to the in_point.
Argument
Description
second_geometry
Required arcgis.geometry.Geometry. A second geometry
as_percentage
Optional Boolean. If False, the measure will be returned as a distance; if True, the measure will be returned as a percentage.
- Returns
float
-
overlaps
(second_geometry)¶ Indicates if the intersection of the two geometries has the same shape type as one of the input geometries and is not equivalent to either of the input geometries.
Argument
Description
second_geometry
Required arcgis.geometry.Geometry. A second geometry
- Returns
boolean
-
property
part_count
¶ Returns the number of parts in a feature’s geometry
- Returns
Series of Integer
-
property
point_count
¶ Returns the number of points in a feature’s geometry
- Returns
Series of Integer
-
point_from_angle_and_distance
(angle, distance, method='GEODESCIC')¶ Returns a point at a given angle and distance in degrees and meters using the specified measurement type.
Argument
Description
angle
Required Float. The angle in degrees to the returned point.
distance
Required Float. The distance in meters to the returned point.
method
Optional String. PLANAR measurements reflect the projection of geographic data onto the 2D surface (in other words, they will not take into account the curvature of the earth). GEODESIC, GREAT_ELLIPTIC, LOXODROME, and PRESERVE_SHAPE measurement types may be chosen as an alternative, if desired.
- Returns
arcgis.geometry.Geometry
-
position_along_line
(value, use_percentage=False)¶ Returns a point on a line at a specified distance from the beginning of the line.
Argument
Description
value
Required Float. The distance along the line.
use_percentage
Optional Boolean. The distance may be specified as a fixed unit of measure or a ratio of the length of the line. If True, value is used as a percentage; if False, value is used as a distance. For percentages, the value should be expressed as a double from 0.0 (0%) to 1.0 (100%).
- Returns
Geometry
-
project_as
(spatial_reference, transformation_name=None)¶ Projects a geometry and optionally applies a geotransformation.
Argument
Description
spatial_reference
Required SpatialReference. The new spatial reference. This can be a SpatialReference object or the coordinate system name.
transformation_name
Required String. The geotransformation name.
- Returns
arcgis.geometry.Geometry
-
query_point_and_distance
(second_geometry, use_percentage=False)¶ Finds the point on the polyline nearest to the in_point and the distance between those points. Also returns information about the side of the line the in_point is on as well as the distance along the line where the nearest point occurs.
Argument
Description
second_geometry
Required arcgis.geometry.Geometry. A second geometry
as_percentage
Optional boolean - if False, the measure will be returned as distance, True, measure will be a percentage
- Returns
tuple
-
segment_along_line
(start_measure, end_measure, use_percentage=False)¶ Returns a Polyline between start and end measures. Similar to Polyline.positionAlongLine but will return a polyline segment between two points on the polyline instead of a single point.
Argument
Description
start_measure
Required Float. The starting distance from the beginning of the line.
end_measure
Required Float. The ending distance from the beginning of the line.
use_percentage
Optional Boolean. The start and end measures may be specified as fixed units or as a ratio. If True, start_measure and end_measure are used as a percentage; if False, start_measure and end_measure are used as a distance. For percentages, the measures should be expressed as a double from 0.0 (0 percent) to 1.0 (100 percent).
- Returns
Geometry
-
snap_to_line
(second_geometry)¶ Returns a new point based on in_point snapped to this geometry.
Argument
Description
second_geometry
Required arcgis.geometry.Geometry. A second geometry
- Returns
arcgis.gis.Geometry
-
property
spatial_reference
¶ Returns the Spatial Reference of the Geometry
- Returns
Series of SpatialReference
-
symmetric_difference
(second_geometry)¶ Constructs the geometry that is the union of two geometries minus the instersection of those geometries.
The two input geometries must be the same shape type.
Argument
Description
second_geometry
Required arcgis.geometry.Geometry. A second geometry
- Returns
arcgis.gis.Geometry
-
touches
(second_geometry)¶ Indicates if the boundaries of the geometries intersect.
Argument
Description
second_geometry
Required arcgis.geometry.Geometry. A second geometry
- Returns
boolean
-
property
true_centroid
¶ Returns the true centroid of the Geometry
- Returns
Series of Points
-
union
(second_geometry)¶ Constructs the geometry that is the set-theoretic union of the input geometries.
Argument
Description
second_geometry
Required arcgis.geometry.Geometry. A second geometry
- Returns
arcgis.gis.Geometry
-
within
(second_geometry, relation=None)¶ Indicates if the base geometry is within the comparison geometry.
Argument
Description
second_geometry
Required arcgis.geometry.Geometry. A second geometry
relation
Optional String. The spatial relationship type.
BOUNDARY - Relationship has no restrictions for interiors or boundaries.
CLEMENTINI - Interiors of geometries must intersect. Specifying CLEMENTINI is equivalent to specifying None. This is the default.
PROPER - Boundaries of geometries must not intersect.
- Returns
boolean
-
property
arcgis.features.SpatialDataFrame¶
-
class
arcgis.features.
SpatialDataFrame
(*args, **kwargs)¶ A Spatial Dataframe is an object to manipulate, manage and translate data into new forms of information for users.
Functionality of the Spatial DataFrame is determined by the Geometry Engine available to the object at creation. It will first leverage the arcpy geometry engine, then shapely, then it will create the geometry objects without any engine.
Scenerios
Engine Type
Functionality
ArcPy
Users will have the full functionality provided by the API.
Shapely
Users get a sub-set of operations, and all properties.
- Valid Properties
JSON
WKT
WKB
area
centroid
extent
first_point
hull_rectangle
is_multipart
label_point
last_point
length
length3D
part_count
point_count
true_centroid
- Valid Functions
boundary
buffer
contains
convex_hull
crosses
difference
disjoint
distance_to
equals
generalize
intersect
overlaps
symmetric_difference
touches
union
within
Everything else will return None
No Engine
Values will return None by default
- Required Parameters:
None
- Optional:
- param data
panda’s dataframe containing attribute information
- param geometry
list/array/geoseries of arcgis.geometry objects
- param sr
spatial reference of the dataframe. This can be the factory code, WKT string, arcpy.SpatialReference object, or arcgis.SpatailReference object.
- param gis
passing a gis.GIS object set to Pro will ensure arcpy is installed and a full swatch of functionality is available to the end user.
-
property
JSON
¶ Returns an Esri JSON representation of the geometry as a string.
-
property
T
¶ Transpose index and columns.
Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property
T
is an accessor to the methodtranspose()
.- *argstuple, optional
Accepted for compatibility with NumPy.
- copybool, default False
Whether to copy the data after transposing, even for DataFrames with a single dtype.
Note that a copy is always required for mixed dtype DataFrames, or for DataFrames with any extension types.
- DataFrame
The transposed DataFrame.
numpy.transpose : Permute the dimensions of a given array.
Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the object dtype. In such a case, a copy of the data is always made.
Square DataFrame with homogeneous dtype
>>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = pd.DataFrame(data=d1) >>> df1 col1 col2 0 1 3 1 2 4
>>> df1_transposed = df1.T # or df1.transpose() >>> df1_transposed 0 1 col1 1 2 col2 3 4
When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype:
>>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes 0 int64 1 int64 dtype: object
Non-square DataFrame with mixed dtypes
>>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob 8.0 True 0
>>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8 employed False True kids 0 0
When the DataFrame has mixed dtypes, we get a transposed DataFrame with the object dtype:
>>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype: object
-
property
WKB
¶ Returns the well-known binary (WKB) representation for OGC geometry. It provides a portable representation of a geometry value as a contiguous stream of bytes.
-
property
WKT
¶ Returns the well-known text (WKT) representation for OGC geometry. It provides a portable representation of a geometry value as a text string.
-
abs
() → FrameOrSeries¶ Return a Series/DataFrame with absolute numeric value of each element.
This function only applies to elements that are all numeric.
- abs
Series/DataFrame containing the absolute value of each element.
numpy.absolute : Calculate the absolute value element-wise.
For
complex
inputs,1.2 + 1j
, the absolute value is \(\sqrt{ a^2 + b^2 }\).Absolute numeric values in a Series.
>>> s = pd.Series([-1.10, 2, -3.33, 4]) >>> s.abs() 0 1.10 1 2.00 2 3.33 3 4.00 dtype: float64
Absolute numeric values in a Series with complex numbers.
>>> s = pd.Series([1.2 + 1j]) >>> s.abs() 0 1.56205 dtype: float64
Absolute numeric values in a Series with a Timedelta element.
>>> s = pd.Series([pd.Timedelta('1 days')]) >>> s.abs() 0 1 days dtype: timedelta64[ns]
Select rows with data closest to certain value using argsort (from StackOverflow).
>>> df = pd.DataFrame({ ... 'a': [4, 5, 6, 7], ... 'b': [10, 20, 30, 40], ... 'c': [100, 50, -30, -50] ... }) >>> df a b c 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50 >>> df.loc[(df.c - 43).abs().argsort()] a b c 1 5 20 50 0 4 10 100 2 6 30 -30 3 7 40 -50
-
add
(other, axis='columns', level=None, fill_value=None)¶ Get Addition of dataframe and other, element-wise (binary operator add).
Equivalent to
dataframe + other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, radd.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
add_prefix
(prefix: str) → FrameOrSeries¶ Prefix labels with string prefix.
For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed.
- prefixstr
The string to add before each label.
- Series or DataFrame
New Series or DataFrame with updated labels.
Series.add_suffix: Suffix row labels with string suffix. DataFrame.add_suffix: Suffix column labels with string suffix.
>>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64
>>> s.add_prefix('item_') item_0 1 item_1 2 item_2 3 item_3 4 dtype: int64
>>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6
>>> df.add_prefix('col_') col_A col_B 0 1 3 1 2 4 2 3 5 3 4 6
-
add_suffix
(suffix: str) → FrameOrSeries¶ Suffix labels with string suffix.
For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed.
- suffixstr
The string to add after each label.
- Series or DataFrame
New Series or DataFrame with updated labels.
Series.add_prefix: Prefix row labels with string prefix. DataFrame.add_prefix: Prefix column labels with string prefix.
>>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64
>>> s.add_suffix('_item') 0_item 1 1_item 2 2_item 3 3_item 4 dtype: int64
>>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6
>>> df.add_suffix('_col') A_col B_col 0 1 3 1 2 4 2 3 5 3 4 6
-
agg
(func, axis=0, *args, **kwargs)¶ Aggregate using one or more operations over the specified axis.
New in version 0.20.0.
- funcfunction, str, list or dict
Function to use for aggregating the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply.
Accepted combinations are:
function
string function name
list of functions and/or function names, e.g.
[np.sum, 'mean']
dict of axis labels -> functions, function names or list of such.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
If 0 or ‘index’: apply function to each column. If 1 or ‘columns’: apply function to each row.
- *args
Positional arguments to pass to func.
- **kwargs
Keyword arguments to pass to func.
scalar, Series or DataFrame
The return can be:
scalar : when Series.agg is called with single function
Series : when DataFrame.agg is called with a single function
DataFrame : when DataFrame.agg is called with several functions
Return scalar, Series or DataFrame.
The aggregation operations are always performed over an axis, either the index (default) or the column axis. This behavior is different from numpy aggregation functions (mean, median, prod, sum, std, var), where the default is to compute the aggregation of the flattened array, e.g.,
numpy.mean(arr_2d)
as opposed tonumpy.mean(arr_2d, axis=0)
.agg is an alias for aggregate. Use the alias.
DataFrame.apply : Perform any type of operations. DataFrame.transform : Perform transformation type operations. core.groupby.GroupBy : Perform operations over groups. core.resample.Resampler : Perform operations over resampled bins. core.window.Rolling : Perform operations over rolling window. core.window.Expanding : Perform operations over expanding window. core.window.EWM : Perform operation over exponential weighted
window.
agg is an alias for aggregate. Use the alias.
A passed user-defined-function will be passed a Series for evaluation.
>>> df = pd.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C'])
Aggregate these functions over the rows.
>>> df.agg(['sum', 'min']) A B C sum 12.0 15.0 18.0 min 1.0 2.0 3.0
Different aggregations per column.
>>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) A B max NaN 8.0 min 1.0 2.0 sum 12.0 NaN
Aggregate over the columns.
>>> df.agg("mean", axis="columns") 0 2.0 1 5.0 2 8.0 3 NaN dtype: float64
-
aggregate
(func, axis=0, *args, **kwargs)¶ Aggregate using one or more operations over the specified axis.
New in version 0.20.0.
- funcfunction, str, list or dict
Function to use for aggregating the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply.
Accepted combinations are:
function
string function name
list of functions and/or function names, e.g.
[np.sum, 'mean']
dict of axis labels -> functions, function names or list of such.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
If 0 or ‘index’: apply function to each column. If 1 or ‘columns’: apply function to each row.
- *args
Positional arguments to pass to func.
- **kwargs
Keyword arguments to pass to func.
scalar, Series or DataFrame
The return can be:
scalar : when Series.agg is called with single function
Series : when DataFrame.agg is called with a single function
DataFrame : when DataFrame.agg is called with several functions
Return scalar, Series or DataFrame.
The aggregation operations are always performed over an axis, either the index (default) or the column axis. This behavior is different from numpy aggregation functions (mean, median, prod, sum, std, var), where the default is to compute the aggregation of the flattened array, e.g.,
numpy.mean(arr_2d)
as opposed tonumpy.mean(arr_2d, axis=0)
.agg is an alias for aggregate. Use the alias.
DataFrame.apply : Perform any type of operations. DataFrame.transform : Perform transformation type operations. core.groupby.GroupBy : Perform operations over groups. core.resample.Resampler : Perform operations over resampled bins. core.window.Rolling : Perform operations over rolling window. core.window.Expanding : Perform operations over expanding window. core.window.EWM : Perform operation over exponential weighted
window.
agg is an alias for aggregate. Use the alias.
A passed user-defined-function will be passed a Series for evaluation.
>>> df = pd.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C'])
Aggregate these functions over the rows.
>>> df.agg(['sum', 'min']) A B C sum 12.0 15.0 18.0 min 1.0 2.0 3.0
Different aggregations per column.
>>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) A B max NaN 8.0 min 1.0 2.0 sum 12.0 NaN
Aggregate over the columns.
>>> df.agg("mean", axis="columns") 0 2.0 1 5.0 2 8.0 3 NaN dtype: float64
-
align
(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None) → pandas.core.frame.DataFrame¶ Align two objects on their axes with the specified join method.
Join method is specified for each axis Index.
other : DataFrame or Series join : {‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’ axis : allowed axis of the other object, default None
Align on index (0), columns (1), or both (None).
- levelint or level name, default None
Broadcast across a level, matching Index values on the passed MultiIndex level.
- copybool, default True
Always returns new objects. If copy=False and no reindexing is required then original objects are returned.
- fill_valuescalar, default np.NaN
Value to use for missing values. Defaults to NaN, but can be any “compatible” value.
- method{‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None
Method to use for filling holes in reindexed Series:
pad / ffill: propagate last valid observation forward to next valid.
backfill / bfill: use NEXT valid observation to fill gap.
- limitint, default None
If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.
- fill_axis{0 or ‘index’, 1 or ‘columns’}, default 0
Filling axis, method and limit.
- broadcast_axis{0 or ‘index’, 1 or ‘columns’}, default None
Broadcast values along this axis, if aligning two objects of different dimensions.
- (left, right)(DataFrame, type of other)
Aligned objects.
-
all
(axis=0, bool_only=None, skipna=True, level=None, **kwargs)¶ Return whether all elements are True, potentially over an axis.
Returns True unless there at least one element within a series or along a Dataframe axis that is False or equivalent (e.g. zero or empty).
- axis{0 or ‘index’, 1 or ‘columns’, None}, default 0
Indicate which axis or axes should be reduced.
0 / ‘index’ : reduce the index, return a Series whose index is the original column labels.
1 / ‘columns’ : reduce the columns, return a Series whose index is the original index.
None : reduce all axes, return a scalar.
- bool_onlybool, default None
Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.
- skipnabool, default True
Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be True, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- **kwargsany, default None
Additional keywords have no effect but might be accepted for compatibility with NumPy.
- Series or DataFrame
If level is specified, then, DataFrame is returned; otherwise, Series is returned.
Series.all : Return True if all elements are True. DataFrame.any : Return True if one (or more) elements are True.
Series
>>> pd.Series([True, True]).all() True >>> pd.Series([True, False]).all() False >>> pd.Series([]).all() True >>> pd.Series([np.nan]).all() True >>> pd.Series([np.nan]).all(skipna=False) True
DataFrames
Create a dataframe from a dictionary.
>>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]}) >>> df col1 col2 0 True True 1 True False
Default behaviour checks if column-wise values all return True.
>>> df.all() col1 True col2 False dtype: bool
Specify
axis='columns'
to check if row-wise values all return True.>>> df.all(axis='columns') 0 True 1 False dtype: bool
Or
axis=None
for whether every value is True.>>> df.all(axis=None) False
-
angle_distance_to
(second_geometry, method='GEODESIC')¶ Returns a tuple of angle and distance to another point using a measurement type.
- Paramters:
- second_geometry
a second geometry
- method
PLANAR measurements reflect the projection of geographic
data onto the 2D surface (in other words, they will not take into account the curvature of the earth). GEODESIC, GREAT_ELLIPTIC, LOXODROME, and PRESERVE_SHAPE measurement types may be chosen as an alternative, if desired.
-
any
(axis=0, bool_only=None, skipna=True, level=None, **kwargs)¶ Return whether any element is True, potentially over an axis.
Returns False unless there at least one element within a series or along a Dataframe axis that is True or equivalent (e.g. non-zero or non-empty).
- axis{0 or ‘index’, 1 or ‘columns’, None}, default 0
Indicate which axis or axes should be reduced.
0 / ‘index’ : reduce the index, return a Series whose index is the original column labels.
1 / ‘columns’ : reduce the columns, return a Series whose index is the original index.
None : reduce all axes, return a scalar.
- bool_onlybool, default None
Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.
- skipnabool, default True
Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be False, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- **kwargsany, default None
Additional keywords have no effect but might be accepted for compatibility with NumPy.
- Series or DataFrame
If level is specified, then, DataFrame is returned; otherwise, Series is returned.
numpy.any : Numpy version of this method. Series.any : Return whether any element is True. Series.all : Return whether all elements are True. DataFrame.any : Return whether any element is True over requested axis. DataFrame.all : Return whether all elements are True over requested axis.
Series
For Series input, the output is a scalar indicating whether any element is True.
>>> pd.Series([False, False]).any() False >>> pd.Series([True, False]).any() True >>> pd.Series([]).any() False >>> pd.Series([np.nan]).any() False >>> pd.Series([np.nan]).any(skipna=False) True
DataFrame
Whether each column contains at least one True element (the default).
>>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]}) >>> df A B C 0 1 0 0 1 2 2 0
>>> df.any() A True B True C False dtype: bool
Aggregating over the columns.
>>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]}) >>> df A B 0 True 1 1 False 2
>>> df.any(axis='columns') 0 True 1 True dtype: bool
>>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]}) >>> df A B 0 True 1 1 False 0
>>> df.any(axis='columns') 0 True 1 False dtype: bool
Aggregating over the entire DataFrame with
axis=None
.>>> df.any(axis=None) True
any for an empty DataFrame is an empty Series.
>>> pd.DataFrame([]).any() Series([], dtype: bool)
-
append
(other, ignore_index=False, verify_integrity=False, sort=False) → pandas.core.frame.DataFrame¶ Append rows of other to the end of caller, returning a new object.
Columns in other that are not in the caller are added as new columns.
- otherDataFrame or Series/dict-like object, or list of these
The data to append.
- ignore_indexbool, default False
If True, do not use the index labels.
- verify_integritybool, default False
If True, raise ValueError on creating index with duplicates.
- sortbool, default False
Sort columns if the columns of self and other are not aligned.
New in version 0.23.0.
Changed in version 1.0.0: Changed to not sort by default.
DataFrame
concat : General function to concatenate DataFrame or Series objects.
If a list of dict/series is passed and the keys are all contained in the DataFrame’s index, the order of the columns in the resulting DataFrame will be unchanged.
Iteratively appending rows to a DataFrame can be more computationally intensive than a single concatenate. A better solution is to append those rows to a list and then concatenate the list with the original DataFrame all at once.
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df A B 0 1 2 1 3 4 >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB')) >>> df.append(df2) A B 0 1 2 1 3 4 0 5 6 1 7 8
With ignore_index set to True:
>>> df.append(df2, ignore_index=True) A B 0 1 2 1 3 4 2 5 6 3 7 8
The following, while not recommended methods for generating DataFrames, show two ways to generate a DataFrame from multiple data sources.
Less efficient:
>>> df = pd.DataFrame(columns=['A']) >>> for i in range(5): ... df = df.append({'A': i}, ignore_index=True) >>> df A 0 0 1 1 2 2 3 3 4 4
More efficient:
>>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)], ... ignore_index=True) A 0 0 1 1 2 2 3 3 4 4
-
apply
(func, axis=0, raw=False, result_type=None, args=(), **kwds)¶ Apply a function along an axis of the DataFrame.
Objects passed to the function are Series objects whose index is either the DataFrame’s index (
axis=0
) or the DataFrame’s columns (axis=1
). By default (result_type=None
), the final return type is inferred from the return type of the applied function. Otherwise, it depends on the result_type argument.- funcfunction
Function to apply to each column or row.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
Axis along which the function is applied:
0 or ‘index’: apply function to each column.
1 or ‘columns’: apply function to each row.
- rawbool, default False
Determines if row or column is passed as a Series or ndarray object:
False
: passes each row or column as a Series to the function.True
: the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance.
- result_type{‘expand’, ‘reduce’, ‘broadcast’, None}, default None
These only act when
axis=1
(columns):‘expand’ : list-like results will be turned into columns.
‘reduce’ : returns a Series if possible rather than expanding list-like results. This is the opposite of ‘expand’.
‘broadcast’ : results will be broadcast to the original shape of the DataFrame, the original index and columns will be retained.
The default behaviour (None) depends on the return value of the applied function: list-like results will be returned as a Series of those. However if the apply function returns a Series these are expanded to columns.
New in version 0.23.0.
- argstuple
Positional arguments to pass to func in addition to the array/series.
- **kwds
Additional keyword arguments to pass as keywords arguments to func.
- Series or DataFrame
Result of applying
func
along the given axis of the DataFrame.
DataFrame.applymap: For elementwise operations. DataFrame.aggregate: Only perform aggregating type operations. DataFrame.transform: Only perform transforming type operations.
>>> df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B']) >>> df A B 0 4 9 1 4 9 2 4 9
Using a numpy universal function (in this case the same as
np.sqrt(df)
):>>> df.apply(np.sqrt) A B 0 2.0 3.0 1 2.0 3.0 2 2.0 3.0
Using a reducing function on either axis
>>> df.apply(np.sum, axis=0) A 12 B 27 dtype: int64
>>> df.apply(np.sum, axis=1) 0 13 1 13 2 13 dtype: int64
Returning a list-like will result in a Series
>>> df.apply(lambda x: [1, 2], axis=1) 0 [1, 2] 1 [1, 2] 2 [1, 2] dtype: object
Passing result_type=’expand’ will expand list-like results to columns of a Dataframe
>>> df.apply(lambda x: [1, 2], axis=1, result_type='expand') 0 1 0 1 2 1 1 2 2 1 2
Returning a Series inside the function is similar to passing
result_type='expand'
. The resulting column names will be the Series index.>>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) foo bar 0 1 2 1 1 2 2 1 2
Passing
result_type='broadcast'
will ensure the same shape result, whether list-like or scalar is returned by the function, and broadcast it along the axis. The resulting column names will be the originals.>>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') A B 0 1 2 1 1 2 2 1 2
-
applymap
(func) → pandas.core.frame.DataFrame¶ Apply a function to a Dataframe elementwise.
This method applies a function that accepts and returns a scalar to every element of a DataFrame.
- funccallable
Python function, returns a single value from a single value.
- DataFrame
Transformed DataFrame.
DataFrame.apply : Apply a function along input axis of DataFrame.
In the current implementation applymap calls func twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first column/row.
>>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567
>>> df.applymap(lambda x: len(str(x))) 0 1 0 3 4 1 5 5
Note that a vectorized version of func often exists, which will be much faster. You could square each number elementwise.
>>> df.applymap(lambda x: x**2) 0 1 0 1.000000 4.494400 1 11.262736 20.857489
But it’s better to avoid applymap in that case.
>>> df ** 2 0 1 0 1.000000 4.494400 1 11.262736 20.857489
-
property
area
¶ The area of a polygon feature. Empty for all other feature types.
-
property
as_arcpy
¶ Returns an Esri ArcPy geometry in a Series
-
property
as_shapely
¶ Returns a Shapely Geometry Objects in a Series
-
asfreq
(freq, method=None, how: Optional[str] = None, normalize: bool = False, fill_value=None) → FrameOrSeries¶ Convert TimeSeries to specified frequency.
Optionally provide filling method to pad/backfill missing values.
Returns the original data conformed to a new index with the specified frequency.
resample
is more appropriate if an operation, such as summarization, is necessary to represent the data at the new frequency.freq : DateOffset or str method : {‘backfill’/’bfill’, ‘pad’/’ffill’}, default None
Method to use for filling holes in reindexed Series (note this does not fill NaNs that already were present):
‘pad’ / ‘ffill’: propagate last valid observation forward to next valid
‘backfill’ / ‘bfill’: use NEXT valid observation to fill.
- how{‘start’, ‘end’}, default end
For PeriodIndex only (see PeriodIndex.asfreq).
- normalizebool, default False
Whether to reset output index to midnight.
- fill_valuescalar, optional
Value to use for missing values, applied during upsampling (note this does not fill NaNs that already were present).
converted : same type as caller
reindex
To learn more about the frequency strings, please see this link.
Start by creating a series with 4 one minute timestamps.
>>> index = pd.date_range('1/1/2000', periods=4, freq='T') >>> series = pd.Series([0.0, None, 2.0, 3.0], index=index) >>> df = pd.DataFrame({'s':series}) >>> df s 2000-01-01 00:00:00 0.0 2000-01-01 00:01:00 NaN 2000-01-01 00:02:00 2.0 2000-01-01 00:03:00 3.0
Upsample the series into 30 second bins.
>>> df.asfreq(freq='30S') s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 NaN 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 NaN 2000-01-01 00:03:00 3.0
Upsample again, providing a
fill value
.>>> df.asfreq(freq='30S', fill_value=9.0) s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 9.0 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 9.0 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 9.0 2000-01-01 00:03:00 3.0
Upsample again, providing a
method
.>>> df.asfreq(freq='30S', method='bfill') s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 2.0 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 3.0 2000-01-01 00:03:00 3.0
-
asof
(where, subset=None)¶ Return the last row(s) without any NaNs before where.
The last row (for each element in where, if list) without any NaN is taken. In case of a
DataFrame
, the last row without NaN considering only the subset of columns (if not None)If there is no good value, NaN is returned for a Series or a Series of NaN values for a DataFrame
- wheredate or array-like of dates
Date(s) before which the last row(s) are returned.
- subsetstr or array-like of str, default None
For DataFrame, if not None, only use these columns to check for NaNs.
scalar, Series, or DataFrame
The return can be:
scalar : when self is a Series and where is a scalar
Series: when self is a Series and where is an array-like, or when self is a DataFrame and where is a scalar
DataFrame : when self is a DataFrame and where is an array-like
Return scalar, Series, or DataFrame.
merge_asof : Perform an asof merge. Similar to left join.
Dates are assumed to be sorted. Raises if this is not the case.
A Series and a scalar where.
>>> s = pd.Series([1, 2, np.nan, 4], index=[10, 20, 30, 40]) >>> s 10 1.0 20 2.0 30 NaN 40 4.0 dtype: float64
>>> s.asof(20) 2.0
For a sequence where, a Series is returned. The first value is NaN, because the first element of where is before the first index value.
>>> s.asof([5, 20]) 5 NaN 20 2.0 dtype: float64
Missing values are not considered. The following is
2.0
, not NaN, even though NaN is at the index location for30
.>>> s.asof(30) 2.0
Take all columns into consideration
>>> df = pd.DataFrame({'a': [10, 20, 30, 40, 50], ... 'b': [None, None, None, None, 500]}, ... index=pd.DatetimeIndex(['2018-02-27 09:01:00', ... '2018-02-27 09:02:00', ... '2018-02-27 09:03:00', ... '2018-02-27 09:04:00', ... '2018-02-27 09:05:00'])) >>> df.asof(pd.DatetimeIndex(['2018-02-27 09:03:30', ... '2018-02-27 09:04:30'])) a b 2018-02-27 09:03:30 NaN NaN 2018-02-27 09:04:30 NaN NaN
Take a single column into consideration
>>> df.asof(pd.DatetimeIndex(['2018-02-27 09:03:30', ... '2018-02-27 09:04:30']), ... subset=['a']) a b 2018-02-27 09:03:30 30.0 NaN 2018-02-27 09:04:30 40.0 NaN
-
assign
(**kwargs) → pandas.core.frame.DataFrame¶ Assign new columns to a DataFrame.
Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten.
- **kwargsdict of {str: callable or Series}
The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn’t check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned.
- DataFrame
A new DataFrame with the new columns in addition to all the existing columns.
Assigning multiple columns within the same
assign
is possible. Later items in ‘**kwargs’ may refer to newly created or modified columns in ‘df’; items are computed and assigned into ‘df’ in order.Changed in version 0.23.0: Keyword argument order is maintained.
>>> df = pd.DataFrame({'temp_c': [17.0, 25.0]}, ... index=['Portland', 'Berkeley']) >>> df temp_c Portland 17.0 Berkeley 25.0
Where the value is a callable, evaluated on df:
>>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0
Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence:
>>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0
You can create multiple columns within the same assign where one of the columns depends on another one defined within the same assign:
>>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32, ... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9) temp_c temp_f temp_k Portland 17.0 62.6 290.15 Berkeley 25.0 77.0 298.15
-
astype
(dtype, copy: bool = True, errors: str = 'raise') → FrameOrSeries¶ Cast a pandas object to a specified dtype
dtype
.- dtypedata type, or dict of column name -> data type
Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, …}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame’s columns to column-specific types.
- copybool, default True
Return a copy when
copy=True
(be very careful settingcopy=False
as changes to values then may propagate to other pandas objects).- errors{‘raise’, ‘ignore’}, default ‘raise’
Control raising of exceptions on invalid data for provided dtype.
raise
: allow exceptions to be raisedignore
: suppress exceptions. On error return original object.
casted : same type as caller
to_datetime : Convert argument to datetime. to_timedelta : Convert argument to timedelta. to_numeric : Convert argument to a numeric type. numpy.ndarray.astype : Cast a numpy array to a specified type.
Create a DataFrame:
>>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = pd.DataFrame(data=d) >>> df.dtypes col1 int64 col2 int64 dtype: object
Cast all columns to int32:
>>> df.astype('int32').dtypes col1 int32 col2 int32 dtype: object
Cast col1 to int32 using a dictionary:
>>> df.astype({'col1': 'int32'}).dtypes col1 int32 col2 int64 dtype: object
Create a series:
>>> ser = pd.Series([1, 2], dtype='int32') >>> ser 0 1 1 2 dtype: int32 >>> ser.astype('int64') 0 1 1 2 dtype: int64
Convert to categorical type:
>>> ser.astype('category') 0 1 1 2 dtype: category Categories (2, int64): [1, 2]
Convert to ordered categorical type with custom ordering:
>>> cat_dtype = pd.api.types.CategoricalDtype( ... categories=[2, 1], ordered=True) >>> ser.astype(cat_dtype) 0 1 1 2 dtype: category Categories (2, int64): [2 < 1]
Note that using
copy=False
and changing data on a new pandas object may propagate changes:>>> s1 = pd.Series([1, 2]) >>> s2 = s1.astype('int64', copy=False) >>> s2[0] = 10 >>> s1 # note that s1[0] has changed too 0 10 1 2 dtype: int64
-
property
at
¶ Access a single value for a row/column label pair.
Similar to
loc
, in that both provide label-based lookups. Useat
if you only need to get or set a single value in a DataFrame or Series.- KeyError
If ‘label’ does not exist in DataFrame.
- DataFrame.iatAccess a single value for a row/column pair by integer
position.
DataFrame.loc : Access a group of rows and columns by label(s). Series.at : Access a single value using a label.
>>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... index=[4, 5, 6], columns=['A', 'B', 'C']) >>> df A B C 4 0 2 3 5 0 4 1 6 10 20 30
Get value at specified row/column pair
>>> df.at[4, 'B'] 2
Set value at specified row/column pair
>>> df.at[4, 'B'] = 10 >>> df.at[4, 'B'] 10
Get value within a Series
>>> df.loc[5].at['B'] 4
-
at_time
(time, asof: bool = False, axis=None) → FrameOrSeries¶ Select values at particular time of day (e.g. 9:30AM).
time : datetime.time or str axis : {0 or ‘index’, 1 or ‘columns’}, default 0
New in version 0.24.0.
Series or DataFrame
- TypeError
If the index is not a
DatetimeIndex
between_time : Select values between particular times of the day. first : Select initial periods of time series based on a date offset. last : Select final periods of time series based on a date offset. DatetimeIndex.indexer_at_time : Get just the index locations for
values at particular time of the day.
>>> i = pd.date_range('2018-04-09', periods=4, freq='12H') >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i) >>> ts A 2018-04-09 00:00:00 1 2018-04-09 12:00:00 2 2018-04-10 00:00:00 3 2018-04-10 12:00:00 4
>>> ts.at_time('12:00') A 2018-04-09 12:00:00 2 2018-04-10 12:00:00 4
-
property
attrs
¶ Dictionary of global attributes on this object.
Warning
attrs is experimental and may change without warning.
-
property
axes
¶ Return a list representing the axes of the DataFrame.
It has the row axis labels and column axis labels as the only members. They are returned in that order.
>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.axes [RangeIndex(start=0, stop=2, step=1), Index(['col1', 'col2'], dtype='object')]
-
between_time
(start_time, end_time, include_start: bool = True, include_end: bool = True, axis=None) → FrameOrSeries¶ Select values between particular times of the day (e.g., 9:00-9:30 AM).
By setting
start_time
to be later thanend_time
, you can get the times that are not between the two times.start_time : datetime.time or str end_time : datetime.time or str include_start : bool, default True include_end : bool, default True axis : {0 or ‘index’, 1 or ‘columns’}, default 0
New in version 0.24.0.
Series or DataFrame
- TypeError
If the index is not a
DatetimeIndex
at_time : Select values at a particular time of the day. first : Select initial periods of time series based on a date offset. last : Select final periods of time series based on a date offset. DatetimeIndex.indexer_between_time : Get just the index locations for
values between particular times of the day.
>>> i = pd.date_range('2018-04-09', periods=4, freq='1D20min') >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i) >>> ts A 2018-04-09 00:00:00 1 2018-04-10 00:20:00 2 2018-04-11 00:40:00 3 2018-04-12 01:00:00 4
>>> ts.between_time('0:15', '0:45') A 2018-04-10 00:20:00 2 2018-04-11 00:40:00 3
You get the times that are not between two times by setting
start_time
later thanend_time
:>>> ts.between_time('0:45', '0:15') A 2018-04-09 00:00:00 1 2018-04-12 01:00:00 4
-
bfill
(axis=None, inplace: bool = False, limit=None, downcast=None) → Optional[FrameOrSeries]¶ Synonym for
DataFrame.fillna()
withmethod='bfill'
.- %(klass)s or None
Object with missing values filled or None if
inplace=True
.
-
bool
()¶ Return the bool of a single element PandasObject.
This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean
- bool
Same single boolean value converted to bool type.
-
boundary
()¶ Constructs the boundary of the geometry.
-
property
bounds
¶ Return a DataFrame of minx, miny, maxx, maxy values of geometry objects
-
boxplot
(column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, backend=None, **kwargs)¶ Make a box plot from DataFrame columns.
Make a box-and-whisker plot from DataFrame columns, optionally grouped by some other columns. A box plot is a method for graphically depicting groups of numerical data through their quartiles. The box extends from the Q1 to Q3 quartile values of the data, with a line at the median (Q2). The whiskers extend from the edges of box to show the range of the data. The position of the whiskers is set by default to 1.5 * IQR (IQR = Q3 - Q1) from the edges of the box. Outlier points are those past the end of the whiskers.
For further details see Wikipedia’s entry for boxplot.
- columnstr or list of str, optional
Column name or list of names, or vector. Can be any valid input to
pandas.DataFrame.groupby()
.- bystr or array-like, optional
Column in the DataFrame to
pandas.DataFrame.groupby()
. One box-plot will be done per value of columns in by.- axobject of class matplotlib.axes.Axes, optional
The matplotlib axes to be used by boxplot.
- fontsizefloat or str
Tick label font size in points or as a string (e.g., large).
- rotint or float, default 0
The rotation angle of labels (in degrees) with respect to the screen coordinate system.
- gridbool, default True
Setting this to True will show the grid.
- figsizeA tuple (width, height) in inches
The size of the figure to create in matplotlib.
- layouttuple (rows, columns), optional
For example, (3, 5) will display the subplots using 3 columns and 5 rows, starting from the top-left.
- return_type{‘axes’, ‘dict’, ‘both’} or None, default ‘axes’
The kind of object to return. The default is
axes
.‘axes’ returns the matplotlib axes the boxplot is drawn on.
‘dict’ returns a dictionary whose values are the matplotlib Lines of the boxplot.
‘both’ returns a namedtuple with the axes and dict.
when grouping with
by
, a Series mapping columns toreturn_type
is returned.If
return_type
is None, a NumPy array of axes with the same shape aslayout
is returned.
- backendstr, default None
Backend to use instead of the backend specified in the option
plotting.backend
. For instance, ‘matplotlib’. Alternatively, to specify theplotting.backend
for the whole session, setpd.options.plotting.backend
.New in version 1.0.0.
- **kwargs
All other plotting keyword arguments to be passed to
matplotlib.pyplot.boxplot()
.
- result
See Notes.
Series.plot.hist: Make a histogram. matplotlib.pyplot.boxplot : Matplotlib equivalent plot.
The return type depends on the return_type parameter:
‘axes’ : object of class matplotlib.axes.Axes
‘dict’ : dict of matplotlib.lines.Line2D objects
‘both’ : a namedtuple with structure (ax, lines)
For data grouped with
by
, return a Series of the above or a numpy array:Series
array
(forreturn_type = None
)
Use
return_type='dict'
when you want to tweak the appearance of the lines after plotting. In this case a dict containing the Lines making up the boxes, caps, fliers, medians, and whiskers is returned.Boxplots can be created for every column in the dataframe by
df.boxplot()
or indicating the columns to be used:Boxplots of variables distributions grouped by the values of a third variable can be created using the option
by
. For instance:A list of strings (i.e.
['X', 'Y']
) can be passed to boxplot in order to group the data by combination of the variables in the x-axis:The layout of boxplot can be adjusted giving a tuple to
layout
:Additional formatting can be done to the boxplot, like suppressing the grid (
grid=False
), rotating the labels in the x-axis (i.e.rot=45
) or changing the fontsize (i.e.fontsize=15
):The parameter
return_type
can be used to select the type of element returned by boxplot. Whenreturn_type='axes'
is selected, the matplotlib axes on which the boxplot is drawn are returned:>>> boxplot = df.boxplot(column=['Col1', 'Col2'], return_type='axes') >>> type(boxplot) <class 'matplotlib.axes._subplots.AxesSubplot'>
When grouping with
by
, a Series mapping columns toreturn_type
is returned:>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X', ... return_type='axes') >>> type(boxplot) <class 'pandas.core.series.Series'>
If
return_type
is None, a NumPy array of axes with the same shape aslayout
is returned:>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X', ... return_type=None) >>> type(boxplot) <class 'numpy.ndarray'>
-
buffer
(distance)¶ Constructs a polygon at a specified distance from the geometry.
- Parameters:
- distance
length in current projection. Only polygon accept
negative values.
-
property
centroid
¶ The true centroid if it is within or on the feature; otherwise, the label point is returned. Returns a point object.
-
clip
(envelope)¶ Constructs the intersection of the geometry and the specified extent.
- Parameters:
- envelope
arcpy.Extent object
-
columns
¶ The column labels of the DataFrame.
-
combine
(other: pandas.core.frame.DataFrame, func, fill_value=None, overwrite=True) → pandas.core.frame.DataFrame¶ Perform column-wise combine with another DataFrame.
Combines a DataFrame with other DataFrame using func to element-wise combine columns. The row and column indexes of the resulting DataFrame will be the union of the two.
- otherDataFrame
The DataFrame to merge column-wise.
- funcfunction
Function that takes two series as inputs and return a Series or a scalar. Used to merge the two dataframes column by columns.
- fill_valuescalar value, default None
The value to fill NaNs with prior to passing any column to the merge func.
- overwritebool, default True
If True, columns in self that do not exist in other will be overwritten with NaNs.
- DataFrame
Combination of the provided DataFrames.
- DataFrame.combine_firstCombine two DataFrame objects and default to
non-null values in frame calling the method.
Combine using a simple function that chooses the smaller column.
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2 >>> df1.combine(df2, take_smaller) A B 0 0 3 1 0 3
Example using a true element-wise combine function.
>>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, np.minimum) A B 0 1 2 1 0 3
Using fill_value fills Nones prior to passing the column to the merge function.
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 4.0
However, if the same element in both dataframes is None, that None is preserved
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 3.0
Example that demonstrates the use of overwrite and behavior when the axis differ between the dataframes.
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2]) >>> df1.combine(df2, take_smaller) A B C 0 NaN NaN NaN 1 NaN 3.0 -10.0 2 NaN 3.0 1.0
>>> df1.combine(df2, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 -10.0 2 NaN 3.0 1.0
Demonstrating the preference of the passed in dataframe.
>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2]) >>> df2.combine(df1, take_smaller) A B C 0 0.0 NaN NaN 1 0.0 3.0 NaN 2 NaN 3.0 NaN
>>> df2.combine(df1, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0
-
combine_first
(other: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame¶ Update null elements with value in the same location in other.
Combine two DataFrame objects by filling null values in one DataFrame with non-null values from other DataFrame. The row and column indexes of the resulting DataFrame will be the union of the two.
- otherDataFrame
Provided DataFrame to use to fill null values.
DataFrame
- DataFrame.combinePerform series-wise operation on two DataFrames
using a given function.
>>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine_first(df2) A B 0 1.0 3.0 1 0.0 4.0
Null values still persist if the location of that null value does not exist in other
>>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2]) >>> df1.combine_first(df2) A B C 0 NaN 4.0 NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0
-
contains
(second_geometry, relation=None)¶ Indicates if the base geometry contains the comparison geometry.
- Paramters:
- second_geometry
a second geometry
-
convert_dtypes
(infer_objects: bool = True, convert_string: bool = True, convert_integer: bool = True, convert_boolean: bool = True) → FrameOrSeries¶ Convert columns to best possible dtypes using dtypes supporting
pd.NA
.New in version 1.0.0.
- infer_objectsbool, default True
Whether object dtypes should be converted to the best possible types.
- convert_stringbool, default True
Whether object dtypes should be converted to
StringDtype()
.- convert_integerbool, default True
Whether, if possible, conversion can be done to integer extension types.
- convert_booleanbool, defaults True
Whether object dtypes should be converted to
BooleanDtypes()
.
- Series or DataFrame
Copy of input object with new dtype.
infer_objects : Infer dtypes of objects. to_datetime : Convert argument to datetime. to_timedelta : Convert argument to timedelta. to_numeric : Convert argument to a numeric type.
By default,
convert_dtypes
will attempt to convert a Series (or each Series in a DataFrame) to dtypes that supportpd.NA
. By using the optionsconvert_string
,convert_integer
, andconvert_boolean
, it is possible to turn off individual conversions toStringDtype
, the integer extension types orBooleanDtype
, respectively.For object-dtyped columns, if
infer_objects
isTrue
, use the inference rules as during normal Series/DataFrame construction. Then, if possible, convert toStringDtype
,BooleanDtype
or an appropriate integer extension type, otherwise leave asobject
.If the dtype is integer, convert to an appropriate integer extension type.
If the dtype is numeric, and consists of all integers, convert to an appropriate integer extension type.
In the future, as new dtypes are added that support
pd.NA
, the results of this method will change to support those new dtypes.>>> df = pd.DataFrame( ... { ... "a": pd.Series([1, 2, 3], dtype=np.dtype("int32")), ... "b": pd.Series(["x", "y", "z"], dtype=np.dtype("O")), ... "c": pd.Series([True, False, np.nan], dtype=np.dtype("O")), ... "d": pd.Series(["h", "i", np.nan], dtype=np.dtype("O")), ... "e": pd.Series([10, np.nan, 20], dtype=np.dtype("float")), ... "f": pd.Series([np.nan, 100.5, 200], dtype=np.dtype("float")), ... } ... )
Start with a DataFrame with default dtypes.
>>> df a b c d e f 0 1 x True h 10.0 NaN 1 2 y False i NaN 100.5 2 3 z NaN NaN 20.0 200.0
>>> df.dtypes a int32 b object c object d object e float64 f float64 dtype: object
Convert the DataFrame to use best possible dtypes.
>>> dfn = df.convert_dtypes() >>> dfn a b c d e f 0 1 x True h 10 NaN 1 2 y False i <NA> 100.5 2 3 z <NA> <NA> 20 200.0
>>> dfn.dtypes a Int32 b string c boolean d string e Int64 f float64 dtype: object
Start with a Series of strings and missing data represented by
np.nan
.>>> s = pd.Series(["a", "b", np.nan]) >>> s 0 a 1 b 2 NaN dtype: object
Obtain a Series with dtype
StringDtype
.>>> s.convert_dtypes() 0 a 1 b 2 <NA> dtype: string
-
convex_hull
()¶ Constructs the geometry that is the minimal bounding polygon such that all outer angles are convex.
-
coordinates
()¶ returns the point coordinates of the geometry as a np.array object
-
copy
(deep=True)¶ Make a copy of this SpatialDataFrame object Parameters:
- Deep
boolean, default True Make a deep copy, i.e. also copy data
- Returns:
- copy
of SpatialDataFrame
-
corr
(method='pearson', min_periods=1) → pandas.core.frame.DataFrame¶ Compute pairwise correlation of columns, excluding NA/null values.
- method{‘pearson’, ‘kendall’, ‘spearman’} or callable
Method of correlation:
pearson : standard correlation coefficient
kendall : Kendall Tau correlation coefficient
spearman : Spearman rank correlation
- callable: callable with input two 1d ndarrays
and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable’s behavior.
New in version 0.24.0.
- min_periodsint, optional
Minimum number of observations required per pair of columns to have a valid result. Currently only available for Pearson and Spearman correlation.
- DataFrame
Correlation matrix.
DataFrame.corrwith Series.corr
>>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr(method=histogram_intersection) dogs cats dogs 1.0 0.3 cats 0.3 1.0
-
corrwith
(other, axis=0, drop=False, method='pearson') → pandas.core.series.Series¶ Compute pairwise correlation.
Pairwise correlation is computed between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations.
- otherDataFrame, Series
Object with which to compute correlations.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis to use. 0 or ‘index’ to compute column-wise, 1 or ‘columns’ for row-wise.
- dropbool, default False
Drop missing indices from result.
- method{‘pearson’, ‘kendall’, ‘spearman’} or callable
Method of correlation:
pearson : standard correlation coefficient
kendall : Kendall Tau correlation coefficient
spearman : Spearman rank correlation
- callable: callable with input two 1d ndarrays
and returning a float.
New in version 0.24.0.
- Series
Pairwise correlations.
DataFrame.corr
-
count
(axis=0, level=None, numeric_only=False)¶ Count non-NA cells for each column or row.
The values None, NaN, NaT, and optionally numpy.inf (depending on pandas.options.mode.use_inf_as_na) are considered NA.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are generated for each row.
- levelint or str, optional
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame. A str specifies the level name.
- numeric_onlybool, default False
Include only float, int or boolean data.
- Series or DataFrame
For each column/row the number of non-NA/null entries. If level is specified returns a DataFrame.
Series.count: Number of non-NA elements in a Series. DataFrame.shape: Number of DataFrame rows and columns (including NA
elements).
- DataFrame.isna: Boolean same-sized DataFrame showing places of NA
elements.
Constructing DataFrame from a dictionary:
>>> df = pd.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False
Notice the uncounted NA values:
>>> df.count() Person 5 Age 4 Single 5 dtype: int64
Counts for each row:
>>> df.count(axis='columns') 0 3 1 2 2 3 3 3 4 3 dtype: int64
Counts for one level of a MultiIndex:
>>> df.set_index(["Person", "Single"]).count(level="Person") Age Person John 2 Lewis 1 Myla 1
-
cov
(min_periods=None) → pandas.core.frame.DataFrame¶ Compute pairwise covariance of columns, excluding NA/null values.
Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the covariance matrix of the columns of the DataFrame.
Both NA and null values are automatically excluded from the calculation. (See the note below about bias from missing values.) A threshold can be set for the minimum number of observations for each value created. Comparisons with observations below this threshold will be returned as
NaN
.This method is generally used for the analysis of time series data to understand the relationship between different measures across time.
- min_periodsint, optional
Minimum number of observations required per pair of columns to have a valid result.
- DataFrame
The covariance matrix of the series of the DataFrame.
Series.cov : Compute covariance with another Series. core.window.EWM.cov: Exponential weighted sample covariance. core.window.Expanding.cov : Expanding sample covariance. core.window.Rolling.cov : Rolling sample covariance.
Returns the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1.
For DataFrames that have Series that are missing data (assuming that data is missing at random) the returned covariance matrix will be an unbiased estimate of the variance and covariance between the member Series.
However, for many applications this estimate may not be acceptable because the estimate covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of covariance matrices for more details.
>>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], ... columns=['dogs', 'cats']) >>> df.cov() dogs cats dogs 0.666667 -1.000000 cats -1.000000 1.666667
>>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(1000, 5), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df.cov() a b c d e a 0.998438 -0.020161 0.059277 -0.008943 0.014144 b -0.020161 1.059352 -0.008543 -0.024738 0.009826 c 0.059277 -0.008543 1.010670 -0.001486 -0.000271 d -0.008943 -0.024738 -0.001486 0.921297 -0.013692 e 0.014144 0.009826 -0.000271 -0.013692 0.977795
Minimum number of periods
This method also supports an optional
min_periods
keyword that specifies the required minimum number of non-NA observations for each column pair in order to have a valid result:>>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(20, 3), ... columns=['a', 'b', 'c']) >>> df.loc[df.index[:5], 'a'] = np.nan >>> df.loc[df.index[5:10], 'b'] = np.nan >>> df.cov(min_periods=12) a b c a 0.316741 NaN -0.150812 b NaN 1.248003 0.191417 c -0.150812 0.191417 0.895202
-
crosses
(second_geometry)¶ Indicates if the two geometries intersect in a geometry of a lesser shape type.
- Paramters:
- second_geometry
a second geometry
-
cummax
(axis=None, skipna=True, *args, **kwargs)¶ Return cumulative maximum over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative maximum.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The index or the name of the axis. 0 is equivalent to None or ‘index’.
- skipnabool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
- *args, **kwargs :
Additional keywords have no effect but might be accepted for compatibility with NumPy.
Series or DataFrame
- core.window.Expanding.maxSimilar functionality
but ignores
NaN
values.- DataFrame.maxReturn the maximum over
DataFrame axis.
DataFrame.cummax : Return cumulative maximum over DataFrame axis. DataFrame.cummin : Return cumulative minimum over DataFrame axis. DataFrame.cumsum : Return cumulative sum over DataFrame axis. DataFrame.cumprod : Return cumulative product over DataFrame axis.
Series
>>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64
By default, NA values are ignored.
>>> s.cummax() 0 2.0 1 NaN 2 5.0 3 5.0 4 5.0 dtype: float64
To include NA values in the operation, use
skipna=False
>>> s.cummax(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64
DataFrame
>>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0
By default, iterates over rows and finds the maximum in each column. This is equivalent to
axis=None
oraxis='index'
.>>> df.cummax() A B 0 2.0 1.0 1 3.0 NaN 2 3.0 1.0
To iterate over columns and find the maximum in each row, use
axis=1
>>> df.cummax(axis=1) A B 0 2.0 2.0 1 3.0 NaN 2 1.0 1.0
-
cummin
(axis=None, skipna=True, *args, **kwargs)¶ Return cumulative minimum over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative minimum.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The index or the name of the axis. 0 is equivalent to None or ‘index’.
- skipnabool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
- *args, **kwargs :
Additional keywords have no effect but might be accepted for compatibility with NumPy.
Series or DataFrame
- core.window.Expanding.minSimilar functionality
but ignores
NaN
values.- DataFrame.minReturn the minimum over
DataFrame axis.
DataFrame.cummax : Return cumulative maximum over DataFrame axis. DataFrame.cummin : Return cumulative minimum over DataFrame axis. DataFrame.cumsum : Return cumulative sum over DataFrame axis. DataFrame.cumprod : Return cumulative product over DataFrame axis.
Series
>>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64
By default, NA values are ignored.
>>> s.cummin() 0 2.0 1 NaN 2 2.0 3 -1.0 4 -1.0 dtype: float64
To include NA values in the operation, use
skipna=False
>>> s.cummin(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64
DataFrame
>>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0
By default, iterates over rows and finds the minimum in each column. This is equivalent to
axis=None
oraxis='index'
.>>> df.cummin() A B 0 2.0 1.0 1 2.0 NaN 2 1.0 0.0
To iterate over columns and find the minimum in each row, use
axis=1
>>> df.cummin(axis=1) A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0
-
cumprod
(axis=None, skipna=True, *args, **kwargs)¶ Return cumulative product over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative product.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The index or the name of the axis. 0 is equivalent to None or ‘index’.
- skipnabool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
- *args, **kwargs :
Additional keywords have no effect but might be accepted for compatibility with NumPy.
Series or DataFrame
- core.window.Expanding.prodSimilar functionality
but ignores
NaN
values.- DataFrame.prodReturn the product over
DataFrame axis.
DataFrame.cummax : Return cumulative maximum over DataFrame axis. DataFrame.cummin : Return cumulative minimum over DataFrame axis. DataFrame.cumsum : Return cumulative sum over DataFrame axis. DataFrame.cumprod : Return cumulative product over DataFrame axis.
Series
>>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64
By default, NA values are ignored.
>>> s.cumprod() 0 2.0 1 NaN 2 10.0 3 -10.0 4 -0.0 dtype: float64
To include NA values in the operation, use
skipna=False
>>> s.cumprod(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64
DataFrame
>>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0
By default, iterates over rows and finds the product in each column. This is equivalent to
axis=None
oraxis='index'
.>>> df.cumprod() A B 0 2.0 1.0 1 6.0 NaN 2 6.0 0.0
To iterate over columns and find the product in each row, use
axis=1
>>> df.cumprod(axis=1) A B 0 2.0 2.0 1 3.0 NaN 2 1.0 0.0
-
cumsum
(axis=None, skipna=True, *args, **kwargs)¶ Return cumulative sum over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative sum.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The index or the name of the axis. 0 is equivalent to None or ‘index’.
- skipnabool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
- *args, **kwargs :
Additional keywords have no effect but might be accepted for compatibility with NumPy.
Series or DataFrame
- core.window.Expanding.sumSimilar functionality
but ignores
NaN
values.- DataFrame.sumReturn the sum over
DataFrame axis.
DataFrame.cummax : Return cumulative maximum over DataFrame axis. DataFrame.cummin : Return cumulative minimum over DataFrame axis. DataFrame.cumsum : Return cumulative sum over DataFrame axis. DataFrame.cumprod : Return cumulative product over DataFrame axis.
Series
>>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64
By default, NA values are ignored.
>>> s.cumsum() 0 2.0 1 NaN 2 7.0 3 6.0 4 6.0 dtype: float64
To include NA values in the operation, use
skipna=False
>>> s.cumsum(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64
DataFrame
>>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0
By default, iterates over rows and finds the sum in each column. This is equivalent to
axis=None
oraxis='index'
.>>> df.cumsum() A B 0 2.0 1.0 1 5.0 NaN 2 6.0 1.0
To iterate over columns and find the sum in each row, use
axis=1
>>> df.cumsum(axis=1) A B 0 2.0 3.0 1 3.0 NaN 2 1.0 1.0
-
cut
(cutter)¶ Splits this geometry into a part left of the cutting polyline, and a part right of it.
- Parameters:
- cutter
The cutting polyline geometry.
-
densify
(method, distance, deviation)¶ Creates a new geometry with added vertices
- Parameters:
- method
The type of densification, DISTANCE, ANGLE, or GEODESIC
- distance
The maximum distance between vertices. The actual
distance between vertices will usually be less than the maximum distance as new vertices will be evenly distributed along the original segment. If using a type of DISTANCE or ANGLE, the distance is measured in the units of the geometry’s spatial reference. If using a type of GEODESIC, the distance is measured in meters.
- deviation
Densify uses straight lines to approximate curves.
You use deviation to control the accuracy of this approximation. The deviation is the maximum distance between the new segment and the original curve. The smaller its value, the more segments will be required to approximate the curve.
-
describe
(percentiles=None, include=None, exclude=None) → FrameOrSeries¶ Generate descriptive statistics.
Descriptive statistics include those that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding
NaN
values.Analyzes both numeric and object series, as well as
DataFrame
column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail.- percentileslist-like of numbers, optional
The percentiles to include in the output. All should fall between 0 and 1. The default is
[.25, .5, .75]
, which returns the 25th, 50th, and 75th percentiles.- include‘all’, list-like of dtypes or None (default), optional
A white list of data types to include in the result. Ignored for
Series
. Here are the options:‘all’ : All columns of the input will be included in the output.
A list-like of dtypes : Limits the results to the provided data types. To limit the result to numeric types submit
numpy.number
. To limit it instead to object columns submit thenumpy.object
data type. Strings can also be used in the style ofselect_dtypes
(e.g.df.describe(include=['O'])
). To select pandas categorical columns, use'category'
None (default) : The result will include all numeric columns.
- excludelist-like of dtypes or None (default), optional,
A black list of data types to omit from the result. Ignored for
Series
. Here are the options:A list-like of dtypes : Excludes the provided data types from the result. To exclude numeric types submit
numpy.number
. To exclude object columns submit the data typenumpy.object
. Strings can also be used in the style ofselect_dtypes
(e.g.df.describe(include=['O'])
). To exclude pandas categorical columns, use'category'
None (default) : The result will exclude nothing.
- Series or DataFrame
Summary statistics of the Series or Dataframe provided.
DataFrame.count: Count number of non-NA/null observations. DataFrame.max: Maximum of the values in the object. DataFrame.min: Minimum of the values in the object. DataFrame.mean: Mean of the values. DataFrame.std: Standard deviation of the observations. DataFrame.select_dtypes: Subset of a DataFrame including/excluding
columns based on their dtype.
For numeric data, the result’s index will include
count
,mean
,std
,min
,max
as well as lower,50
and upper percentiles. By default the lower percentile is25
and the upper percentile is75
. The50
percentile is the same as the median.For object data (e.g. strings or timestamps), the result’s index will include
count
,unique
,top
, andfreq
. Thetop
is the most common value. Thefreq
is the most common value’s frequency. Timestamps also include thefirst
andlast
items.If multiple object values have the highest count, then the
count
andtop
results will be arbitrarily chosen from among those with the highest count.For mixed data types provided via a
DataFrame
, the default is to return only an analysis of numeric columns. If the dataframe consists only of object and categorical data without any numeric columns, the default is to return an analysis of both the object and categorical columns. Ifinclude='all'
is provided as an option, the result will include a union of attributes of each type.The include and exclude parameters can be used to limit which columns in a
DataFrame
are analyzed for the output. The parameters are ignored when analyzing aSeries
.Describing a numeric
Series
.>>> s = pd.Series([1, 2, 3]) >>> s.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 dtype: float64
Describing a categorical
Series
.>>> s = pd.Series(['a', 'a', 'b', 'c']) >>> s.describe() count 4 unique 3 top a freq 2 dtype: object
Describing a timestamp
Series
.>>> s = pd.Series([ ... np.datetime64("2000-01-01"), ... np.datetime64("2010-01-01"), ... np.datetime64("2010-01-01") ... ]) >>> s.describe() count 3 unique 2 top 2010-01-01 00:00:00 freq 2 first 2000-01-01 00:00:00 last 2010-01-01 00:00:00 dtype: object
Describing a
DataFrame
. By default only numeric fields are returned.>>> df = pd.DataFrame({'categorical': pd.Categorical(['d','e','f']), ... 'numeric': [1, 2, 3], ... 'object': ['a', 'b', 'c'] ... }) >>> df.describe() numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0
Describing all columns of a
DataFrame
regardless of data type.>>> df.describe(include='all') categorical numeric object count 3 3.0 3 unique 3 NaN 3 top f NaN c freq 1 NaN 1 mean NaN 2.0 NaN std NaN 1.0 NaN min NaN 1.0 NaN 25% NaN 1.5 NaN 50% NaN 2.0 NaN 75% NaN 2.5 NaN max NaN 3.0 NaN
Describing a column from a
DataFrame
by accessing it as an attribute.>>> df.numeric.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Name: numeric, dtype: float64
Including only numeric columns in a
DataFrame
description.>>> df.describe(include=[np.number]) numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0
Including only string columns in a
DataFrame
description.>>> df.describe(include=[np.object]) object count 3 unique 3 top c freq 1
Including only categorical columns from a
DataFrame
description.>>> df.describe(include=['category']) categorical count 3 unique 3 top f freq 1
Excluding numeric columns from a
DataFrame
description.>>> df.describe(exclude=[np.number]) categorical object count 3 3 unique 3 3 top f c freq 1 1
Excluding object columns from a
DataFrame
description.>>> df.describe(exclude=[np.object]) categorical numeric count 3 3.0 unique 3 NaN top f NaN freq 1 NaN mean NaN 2.0 std NaN 1.0 min NaN 1.0 25% NaN 1.5 50% NaN 2.0 75% NaN 2.5 max NaN 3.0
-
diff
(periods=1, axis=0) → pandas.core.frame.DataFrame¶ First discrete difference of element.
Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is the element in the same column of the previous row).
- periodsint, default 1
Periods to shift for calculating difference, accepts negative values.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
Take difference over rows (0) or columns (1).
DataFrame
Series.diff: First discrete difference for a Series. DataFrame.pct_change: Percent change over given number of periods. DataFrame.shift: Shift index by desired number of periods with an
optional time freq.
For boolean dtypes, this uses
operator.xor()
rather thanoperator.sub()
.Difference with previous row
>>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}) >>> df a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36
>>> df.diff() a b c 0 NaN NaN NaN 1 1.0 0.0 3.0 2 1.0 1.0 5.0 3 1.0 1.0 7.0 4 1.0 2.0 9.0 5 1.0 3.0 11.0
Difference with previous column
>>> df.diff(axis=1) a b c 0 NaN 0.0 0.0 1 NaN -1.0 3.0 2 NaN -1.0 7.0 3 NaN -1.0 13.0 4 NaN 0.0 20.0 5 NaN 2.0 28.0
Difference with 3rd previous row
>>> df.diff(periods=3) a b c 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 3.0 2.0 15.0 4 3.0 4.0 21.0 5 3.0 6.0 27.0
Difference with following row
>>> df.diff(periods=-1) a b c 0 -1.0 0.0 -3.0 1 -1.0 -1.0 -5.0 2 -1.0 -1.0 -7.0 3 -1.0 -2.0 -9.0 4 -1.0 -3.0 -11.0 5 NaN NaN NaN
-
difference
(second_geometry)¶ Constructs the geometry that is composed only of the region unique to the base geometry but not part of the other geometry. The following illustration shows the results when the red polygon is the source geometry.
- Paramters:
- second_geometry
a second geometry
-
disjoint
(second_geometry)¶ Indicates if the base and comparison geometries share no points in common.
- Paramters:
- second_geometry
a second geometry
-
distance_to
(second_geometry)¶ Returns the minimum distance between two geometries. If the geometries intersect, the minimum distance is 0. Both geometries must have the same projection.
- Paramters:
- second_geometry
a second geometry
-
div
(other, axis='columns', level=None, fill_value=None)¶ Get Floating division of dataframe and other, element-wise (binary operator truediv).
Equivalent to
dataframe / other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rtruediv.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
divide
(other, axis='columns', level=None, fill_value=None)¶ Get Floating division of dataframe and other, element-wise (binary operator truediv).
Equivalent to
dataframe / other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rtruediv.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
dot
(other)¶ Compute the matrix multiplication between the DataFrame and other.
This method computes the matrix product between the DataFrame and the values of an other Series, DataFrame or a numpy array.
It can also be called using
self @ other
in Python >= 3.5.- otherSeries, DataFrame or array-like
The other object to compute the matrix product with.
- Series or DataFrame
If other is a Series, return the matrix product between self and other as a Serie. If other is a DataFrame or a numpy.array, return the matrix product of self and other in a DataFrame of a np.array.
Series.dot: Similar method for Series.
The dimensions of DataFrame and other must be compatible in order to compute the matrix multiplication. In addition, the column names of DataFrame and the index of other must contain the same values, as they will be aligned prior to the multiplication.
The dot method for Series computes the inner product, instead of the matrix product here.
Here we multiply a DataFrame with a Series.
>>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]]) >>> s = pd.Series([1, 1, 2, 1]) >>> df.dot(s) 0 -4 1 5 dtype: int64
Here we multiply a DataFrame with another DataFrame.
>>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(other) 0 1 0 1 4 1 2 2
Note that the dot method give the same result as @
>>> df @ other 0 1 0 1 4 1 2 2
The dot method works also if other is an np.array.
>>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(arr) 0 1 0 1 4 1 2 2
Note how shuffling of the objects does not change the result.
>>> s2 = s.reindex([1, 0, 2, 3]) >>> df.dot(s2) 0 -4 1 5 dtype: int64
-
drop
(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')¶ Drop specified labels from rows or columns.
Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level.
- labelssingle label or list-like
Index or column labels to drop.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’).
- indexsingle label or list-like
Alternative to specifying axis (
labels, axis=0
is equivalent toindex=labels
).New in version 0.21.0.
- columnssingle label or list-like
Alternative to specifying axis (
labels, axis=1
is equivalent tocolumns=labels
).New in version 0.21.0.
- levelint or level name, optional
For MultiIndex, level from which the labels will be removed.
- inplacebool, default False
If True, do operation inplace and return None.
- errors{‘ignore’, ‘raise’}, default ‘raise’
If ‘ignore’, suppress error and only existing labels are dropped.
- DataFrame
DataFrame without the removed index or column labels.
- KeyError
If any of the labels is not found in the selected axis.
DataFrame.loc : Label-location based indexer for selection by label. DataFrame.dropna : Return DataFrame with labels on given axis omitted
where (all or any) data are missing.
- DataFrame.drop_duplicatesReturn DataFrame with duplicate rows
removed, optionally only considering certain columns.
Series.drop : Return Series with specified index labels removed.
>>> df = pd.DataFrame(np.arange(12).reshape(3, 4), ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11
Drop columns
>>> df.drop(['B', 'C'], axis=1) A D 0 0 3 1 4 7 2 8 11
>>> df.drop(columns=['B', 'C']) A D 0 0 3 1 4 7 2 8 11
Drop a row by index
>>> df.drop([0, 1]) A B C D 2 8 9 10 11
Drop columns and/or rows of MultiIndex DataFrame
>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> df = pd.DataFrame(index=midx, columns=['big', 'small'], ... data=[[45, 30], [200, 100], [1.5, 1], [30, 20], ... [250, 150], [1.5, 0.8], [320, 250], ... [1, 0.8], [0.3, 0.2]]) >>> df big small lama speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon speed 320.0 250.0 weight 1.0 0.8 length 0.3 0.2
>>> df.drop(index='cow', columns='small') big lama speed 45.0 weight 200.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3
>>> df.drop(index='length', level=1) big small lama speed 45.0 30.0 weight 200.0 100.0 cow speed 30.0 20.0 weight 250.0 150.0 falcon speed 320.0 250.0 weight 1.0 0.8
-
drop_duplicates
(subset: collections.abc.Hashable = None, keep: Union[str, bool] = 'first', inplace: bool = False, ignore_index: bool = False) → Optional[pandas.core.frame.DataFrame]¶ Return DataFrame with duplicate rows removed.
Considering certain columns is optional. Indexes, including time indexes are ignored.
- subsetcolumn label or sequence of labels, optional
Only consider certain columns for identifying duplicates, by default use all of the columns.
- keep{‘first’, ‘last’, False}, default ‘first’
Determines which duplicates (if any) to keep. -
first
: Drop duplicates except for the first occurrence. -last
: Drop duplicates except for the last occurrence. - False : Drop all duplicates.- inplacebool, default False
Whether to drop duplicates in place or to return a copy.
- ignore_indexbool, default False
If True, the resulting axis will be labeled 0, 1, …, n - 1.
New in version 1.0.0.
- DataFrame
DataFrame with duplicates removed or None if
inplace=True
.
-
droplevel
(level, axis=0) → FrameOrSeries¶ Return DataFrame with requested index / column level(s) removed.
New in version 0.24.0.
- levelint, str, or list-like
If a string is given, must be the name of a level If list-like, elements must be names or positional indexes of levels.
axis : {0 or ‘index’, 1 or ‘columns’}, default 0
- DataFrame
DataFrame with requested index / column level(s) removed.
>>> df = pd.DataFrame([ ... [1, 2, 3, 4], ... [5, 6, 7, 8], ... [9, 10, 11, 12] ... ]).set_index([0, 1]).rename_axis(['a', 'b'])
>>> df.columns = pd.MultiIndex.from_tuples([ ... ('c', 'e'), ('d', 'f') ... ], names=['level_1', 'level_2'])
>>> df level_1 c d level_2 e f a b 1 2 3 4 5 6 7 8 9 10 11 12
>>> df.droplevel('a') level_1 c d level_2 e f b 2 3 4 6 7 8 10 11 12
>>> df.droplevel('level2', axis=1) level_1 c d a b 1 2 3 4 5 6 7 8 9 10 11 12
-
dropna
(axis=0, how='any', thresh=None, subset=None, inplace=False)¶ Remove missing values.
See the User Guide for more on which values are considered missing, and how to work with missing data.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
Determine if rows or columns which contain missing values are removed.
0, or ‘index’ : Drop rows which contain missing values.
1, or ‘columns’ : Drop columns which contain missing value.
Changed in version 1.0.0: Pass tuple or list to drop on multiple axes. Only a single axis is allowed.
- how{‘any’, ‘all’}, default ‘any’
Determine if row or column is removed from DataFrame, when we have at least one NA or all NA.
‘any’ : If any NA values are present, drop that row or column.
‘all’ : If all values are NA, drop that row or column.
- threshint, optional
Require that many non-NA values.
- subsetarray-like, optional
Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include.
- inplacebool, default False
If True, do operation inplace and return None.
- DataFrame
DataFrame with NA entries dropped from it.
DataFrame.isna: Indicate missing values. DataFrame.notna : Indicate existing (non-missing) values. DataFrame.fillna : Replace missing values. Series.dropna : Drop missing values. Index.dropna : Drop missing indices.
>>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [np.nan, 'Batmobile', 'Bullwhip'], ... "born": [pd.NaT, pd.Timestamp("1940-04-25"), ... pd.NaT]}) >>> df name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT
Drop the rows where at least one element is missing.
>>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25
Drop the columns where at least one element is missing.
>>> df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman
Drop the rows where all elements are missing.
>>> df.dropna(how='all') name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT
Keep only the rows with at least 2 non-NA values.
>>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT
Define in which columns to look for missing values.
>>> df.dropna(subset=['name', 'born']) name toy born 1 Batman Batmobile 1940-04-25
Keep the DataFrame with valid entries in the same variable.
>>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25
-
property
dtypes
¶ Return the dtypes in the DataFrame.
This returns a Series with the data type of each column. The result’s index is the original DataFrame’s columns. Columns with mixed types are stored with the
object
dtype. See the User Guide for more.- pandas.Series
The data type of each column.
>>> df = pd.DataFrame({'float': [1.0], ... 'int': [1], ... 'datetime': [pd.Timestamp('20180310')], ... 'string': ['foo']}) >>> df.dtypes float float64 int int64 datetime datetime64[ns] string object dtype: object
-
duplicated
(subset: collections.abc.Hashable = None, keep: Union[str, bool] = 'first') → pandas.core.series.Series¶ Return boolean Series denoting duplicate rows.
Considering certain columns is optional.
- subsetcolumn label or sequence of labels, optional
Only consider certain columns for identifying duplicates, by default use all of the columns.
- keep{‘first’, ‘last’, False}, default ‘first’
Determines which duplicates (if any) to mark.
first
: Mark duplicates asTrue
except for the first occurrence.last
: Mark duplicates asTrue
except for the last occurrence.False : Mark all duplicates as
True
.
Series
-
property
empty
¶ Indicator whether DataFrame is empty.
True if DataFrame is entirely empty (no items), meaning any of the axes are of length 0.
- bool
If DataFrame is empty, return True, if not return False.
Series.dropna DataFrame.dropna
If DataFrame contains only NaNs, it is still not considered empty. See the example below.
An example of an actual empty DataFrame. Notice the index is empty:
>>> df_empty = pd.DataFrame({'A' : []}) >>> df_empty Empty DataFrame Columns: [A] Index: [] >>> df_empty.empty True
If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to make the DataFrame empty:
>>> df = pd.DataFrame({'A' : [np.nan]}) >>> df A 0 NaN >>> df.empty False >>> df.dropna().empty True
-
eq
(other, axis='columns', level=None)¶ Get Equal to of dataframe and other, element-wise (binary operator eq).
Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.
Equivalent to ==, =!, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- DataFrame of bool
Result of the comparison.
DataFrame.eq : Compare DataFrames for equality elementwise. DataFrame.ne : Compare DataFrames for inequality elementwise. DataFrame.le : Compare DataFrames for less than inequality
or equality elementwise.
- DataFrame.ltCompare DataFrames for strictly less than
inequality elementwise.
- DataFrame.geCompare DataFrames for greater than inequality
or equality elementwise.
- DataFrame.gtCompare DataFrames for strictly greater than
inequality elementwise.
Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).
>>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300
Comparison with a scalar, using either the operator or method:
>>> df == 100 cost revenue A False True B False False C True False
>>> df.eq(100) cost revenue A False True B False False C True False
When other is a
Series
, the columns of a DataFrame are aligned with the index of other and broadcast:>>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False True
Use the method to control the broadcast axis:
>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True True
When comparing to an arbitrary sequence, the number of columns must match the number elements in other:
>>> df == [250, 100] cost revenue A True True B False False C False False
Use the method to control the axis:
>>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True False
Compare to a DataFrame of different shape.
>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150
>>> df.gt(other) cost revenue A False False B False False C False True D False False
Compare to a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225
>>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False
-
equals
(second_geometry)¶ Indicates if the base and comparison geometries are of the same shape type and define the same set of points in the plane. This is a 2D comparison only; M and Z values are ignored. Paramters:
- second_geometry
a second geometry
-
erase
(other, inplace=False)¶ Erases
Argument
Description
other
Required Geometry. A geometry object to erase from other geometries.
inplace
Optional boolean. Default False. Modify the SpatialDataFrame in place (do not create a new object)
- Returns
SpatialDataFrame
-
eval
(expr, inplace=False, **kwargs)¶ Evaluate a string describing operations on DataFrame columns.
Operates on columns only, not specific rows or elements. This allows eval to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function.
- exprstr
The expression string to evaluate.
- inplacebool, default False
If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned.
- **kwargs
See the documentation for
eval()
for complete details on the keyword arguments accepted byquery()
.
- ndarray, scalar, or pandas object
The result of the evaluation.
- DataFrame.queryEvaluates a boolean expression to query the columns
of a frame.
- DataFrame.assignCan evaluate an expression or function to create new
values for a column.
- evalEvaluate a Python expression as a string using various
backends.
For more details see the API documentation for
eval()
. For detailed examples see enhancing performance with eval.>>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64
Assignment is allowed though by default the original DataFrame is not modified.
>>> df.eval('C = A + B') A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2
Use
inplace=True
to modify the original DataFrame.>>> df.eval('C = A + B', inplace=True) >>> df A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7
-
ewm
(com=None, span=None, halflife=None, alpha=None, min_periods=0, adjust=True, ignore_na=False, axis=0)¶ Provide exponential weighted functions.
- comfloat, optional
Specify decay in terms of center of mass, \(\alpha = 1 / (1 + com),\text{ for } com \geq 0\).
- spanfloat, optional
Specify decay in terms of span, \(\alpha = 2 / (span + 1),\text{ for } span \geq 1\).
- halflifefloat, optional
Specify decay in terms of half-life, \(\alpha = 1 - exp(log(0.5) / halflife),\text{for} halflife > 0\).
- alphafloat, optional
Specify smoothing factor \(\alpha\) directly, \(0 < \alpha \leq 1\).
- min_periodsint, default 0
Minimum number of observations in window required to have a value (otherwise result is NA).
- adjustbool, default True
Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average).
- ignore_nabool, default False
Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis to use. The value 0 identifies the rows, and 1 identifies the columns.
- DataFrame
A Window sub-classed for the particular operation.
rolling : Provides rolling window calculations. expanding : Provides expanding transformations.
Exactly one of center of mass, span, half-life, and alpha must be provided. Allowed values and relationship between the parameters are specified in the parameter descriptions above; see the link at the end of this section for a detailed explanation.
When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), (1-alpha)**(n-2), …, 1-alpha, 1.
- When adjust is False, weighted averages are calculated recursively as:
weighted_average[0] = arg[0]; weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i].
When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and (1-alpha)**2 and alpha (if adjust is False).
When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False).
More details can be found at https://pandas.pydata.org/pandas-docs/stable/user_guide/computation.html#exponentially-weighted-windows
>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0
>>> df.ewm(com=0.5).mean() B 0 0.000000 1 0.750000 2 1.615385 3 1.615385 4 3.670213
-
expanding
(min_periods=1, center=False, axis=0)¶ Provide expanding transformations.
- min_periodsint, default 1
Minimum number of observations in window required to have a value (otherwise result is NA).
- centerbool, default False
Set the labels at the center of the window.
axis : int or str, default 0
a Window sub-classed for the particular operation
rolling : Provides rolling window calculations. ewm : Provides exponential weighted functions.
By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting
center=True
.>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0
>>> df.expanding(2).sum() B 0 NaN 1 1.0 2 3.0 3 3.0 4 7.0
-
explode
(column: Union[str, Tuple]) → pandas.core.frame.DataFrame¶ Transform each element of a list-like to a row, replicating index values.
New in version 0.25.0.
- columnstr or tuple
Column to explode.
- DataFrame
Exploded lists to rows of the subset columns; index will be duplicated for these rows.
- ValueError :
if columns of the frame are not unique.
- DataFrame.unstackPivot a level of the (necessarily hierarchical)
index labels.
DataFrame.melt : Unpivot a DataFrame from wide format to long format. Series.explode : Explode a DataFrame from list-like columns to long format.
This routine will explode list-likes including lists, tuples, Series, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged. Empty list-likes will result in a np.nan for that row.
>>> df = pd.DataFrame({'A': [[1, 2, 3], 'foo', [], [3, 4]], 'B': 1}) >>> df A B 0 [1, 2, 3] 1 1 foo 1 2 [] 1 3 [3, 4] 1
>>> df.explode('A') A B 0 1 1 0 2 1 0 3 1 1 foo 1 2 NaN 1 3 3 1 3 4 1
-
property
extent
¶ the extent of the geometry
-
ffill
(axis=None, inplace: bool = False, limit=None, downcast=None) → Optional[FrameOrSeries]¶ Synonym for
DataFrame.fillna()
withmethod='ffill'
.- %(klass)s or None
Object with missing values filled or None if
inplace=True
.
-
fillna
(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None) → Optional[pandas.core.frame.DataFrame]¶ Fill NA/NaN values using the specified method.
- valuescalar, dict, Series, or DataFrame
Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). Values not in the dict/Series/DataFrame will not be filled. This value cannot be a list.
- method{‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None
Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use next valid observation to fill gap.
- axis{0 or ‘index’, 1 or ‘columns’}
Axis along which to fill missing values.
- inplacebool, default False
If True, fill in-place. Note: this will modify any other views on this object (e.g., a no-copy slice for a column in a DataFrame).
- limitint, default None
If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.
- downcastdict, default is None
A dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible).
- DataFrame or None
Object with missing values filled or None if
inplace=True
.
interpolate : Fill NaN values using interpolation. reindex : Conform object to new index. asfreq : Convert TimeSeries to specified frequency.
>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0], ... [3, 4, np.nan, 1], ... [np.nan, np.nan, np.nan, 5], ... [np.nan, 3, np.nan, 4]], ... columns=list('ABCD')) >>> df A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN NaN NaN 5 3 NaN 3.0 NaN 4
Replace all NaN elements with 0s.
>>> df.fillna(0) A B C D 0 0.0 2.0 0.0 0 1 3.0 4.0 0.0 1 2 0.0 0.0 0.0 5 3 0.0 3.0 0.0 4
We can also propagate non-null values forward or backward.
>>> df.fillna(method='ffill') A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 3.0 4.0 NaN 5 3 3.0 3.0 NaN 4
Replace all NaN elements in column ‘A’, ‘B’, ‘C’, and ‘D’, with 0, 1, 2, and 3 respectively.
>>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3} >>> df.fillna(value=values) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 2.0 1 2 0.0 1.0 2.0 5 3 0.0 3.0 2.0 4
Only replace the first NaN element.
>>> df.fillna(value=values, limit=1) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 NaN 1 2 NaN 1.0 NaN 5 3 NaN 3.0 NaN 4
-
filter
(items=None, like: Optional[str] = None, regex: Optional[str] = None, axis=None) → FrameOrSeries¶ Subset the dataframe rows or columns according to the specified index labels.
Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index.
- itemslist-like
Keep labels from axis which are in items.
- likestr
Keep labels from axis for which “like in label == True”.
- regexstr (regular expression)
Keep labels from axis for which re.search(regex, label) == True.
- axis{0 or ‘index’, 1 or ‘columns’, None}, default None
The axis to filter on, expressed either as an index (int) or axis name (str). By default this is the info axis, ‘index’ for Series, ‘columns’ for DataFrame.
same type as input object
DataFrame.loc
The
items
,like
, andregex
parameters are enforced to be mutually exclusive.axis
defaults to the info axis that is used when indexing with[]
.>>> df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6])), ... index=['mouse', 'rabbit'], ... columns=['one', 'two', 'three'])
>>> # select columns by name >>> df.filter(items=['one', 'three']) one three mouse 1 3 rabbit 4 6
>>> # select columns by regular expression >>> df.filter(regex='e$', axis=1) one three mouse 1 3 rabbit 4 6
>>> # select rows containing 'bbi' >>> df.filter(like='bbi', axis=0) one two three rabbit 4 5 6
-
first
(offset) → FrameOrSeries¶ Method to subset initial periods of time series data based on a date offset.
offset : str, DateOffset, dateutil.relativedelta
subset : same type as caller
- TypeError
If the index is not a
DatetimeIndex
last : Select final periods of time series based on a date offset. at_time : Select values at a particular time of the day. between_time : Select values between particular times of the day.
>>> i = pd.date_range('2018-04-09', periods=4, freq='2D') >>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i) >>> ts A 2018-04-09 1 2018-04-11 2 2018-04-13 3 2018-04-15 4
Get the rows for the first 3 days:
>>> ts.first('3D') A 2018-04-09 1 2018-04-11 2
Notice the data for 3 first calender days were returned, not the first 3 days observed in the dataset, and therefore data for 2018-04-13 was not returned.
-
property
first_point
¶ The first coordinate point of the geometry.
-
first_valid_index
()¶ Return index for first non-NA/null value.
scalar : type of index
If all elements are non-NA/null, returns None. Also returns None for empty Series/DataFrame.
-
floordiv
(other, axis='columns', level=None, fill_value=None)¶ Get Integer division of dataframe and other, element-wise (binary operator floordiv).
Equivalent to
dataframe // other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rfloordiv.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
static
from_df
(df, address_column='address', geocoder=None)¶ Returns a SpatialDataFrame from a dataframe with an address column.
Argument
Description
df
Required Pandas DataFrame. Source dataset
address_column
Optional String. The default is “address”. This is the name of a column in the specified dataframe that contains addresses (as strings). The addresses are batch geocoded using the GIS’s first configured geocoder and their locations used as the geometry of the spatial dataframe. Ignored if the ‘geometry’ parameter is also specified.
geocoder
Optional Geocoder. The geocoder to be used. If not specified, the active GIS’s first geocoder is used.
- Returns
SpatialDataFrame
NOTE: Credits will be consumed for batch_geocoding, from the GIS to which the geocoder belongs.
-
classmethod
from_dict
(data, orient='columns', dtype=None, columns=None) → pandas.core.frame.DataFrame¶ Construct DataFrame from dict of array-like or dicts.
Creates DataFrame object from dictionary by columns or by index allowing dtype specification.
- datadict
Of the form {field : array-like} or {field : dict}.
- orient{‘columns’, ‘index’}, default ‘columns’
The “orientation” of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass ‘columns’ (default). Otherwise if the keys should be rows, pass ‘index’.
- dtypedtype, default None
Data type to force, otherwise infer.
- columnslist, default None
Column labels to use when
orient='index'
. Raises a ValueError if used withorient='columns'
.New in version 0.23.0.
DataFrame
- DataFrame.from_recordsDataFrame from ndarray (structured
dtype), list of tuples, dict, or DataFrame.
DataFrame : DataFrame object creation using constructor.
By default the keys of the dict become the DataFrame columns:
>>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d
Specify
orient='index'
to create the DataFrame using dictionary keys as rows:>>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 a b c d
When using the ‘index’ orientation, the column names can be specified manually:
>>> pd.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 a b c d
-
static
from_featureclass
(filename, **kwargs)¶ Returns a SpatialDataFrame from a feature class.
Argument
Description
filename
Required string. The full path to the feature class
sql_clause
Optional string. The sql clause to parse data down
where_clause
Optional string. A where statement
sr
Optional SpatialReference. A spatial reference object
- Returns
SpatialDataFrame
-
static
from_hdf
(path_or_buf, key=None, **kwargs)¶ read from the store, close it if we opened it
Retrieve pandas object stored in file, optionally based on where criteria
- path_or_bufpath (string), buffer, or path object (pathlib.Path or
py._path.local.LocalPath) to read from
New in version 0.19.0: support for pathlib, py.path.
- keygroup identifier in the store. Can be omitted if the HDF file
contains a single pandas object.
where : list of Term (or convertable) objects, optional start : optional, integer (defaults to None), row number to start
selection
- stopoptional, integer (defaults to None), row number to stop
selection
- columnsoptional, a list of columns that if not None, will limit the
return columns
iterator : optional, boolean, return an iterator, default False chunksize : optional, nrows to include in iteration, return an iterator
The selected object
-
static
from_layer
(layer, **kwargs)¶ Returns a SpatialDataFrame/Pandas’ Dataframe from a FeatureLayer or Table object.
Arguments
Description
layer
required FeatureLayer/Table. This is the service endpoint object.
- Returns
SpatialDataFrame for feature layers with geometry and Panda’s Dataframe for tables
-
classmethod
from_records
(data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None) → pandas.core.frame.DataFrame¶ Convert structured or record ndarray to DataFrame.
data : ndarray (structured dtype), list of tuples, dict, or DataFrame index : str, list of fields, array-like
Field of array to use as the index, alternately a specific set of input labels to use.
- excludesequence, default None
Columns or fields to exclude.
- columnssequence, default None
Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns).
- coerce_floatbool, default False
Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets.
- nrowsint, default None
Number of rows to read if data is an iterator.
DataFrame
-
static
from_xy
(df, x_column, y_column, sr=4326)¶ Converts a Pandas DataFrame into a Spatial DataFrame by providing the X/Y columns.
Argument
Description
df
Required Pandas DataFrame. Source dataset
x_column
Required string. The name of the X-coordinate series
y_column
Required string. The name of the Y-coordinate series
sr
Optional int. The wkid number of the spatial reference.
- Returns
SpatialDataFrame
-
ge
(other, axis='columns', level=None)¶ Get Greater than or equal to of dataframe and other, element-wise (binary operator ge).
Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.
Equivalent to ==, =!, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- DataFrame of bool
Result of the comparison.
DataFrame.eq : Compare DataFrames for equality elementwise. DataFrame.ne : Compare DataFrames for inequality elementwise. DataFrame.le : Compare DataFrames for less than inequality
or equality elementwise.
- DataFrame.ltCompare DataFrames for strictly less than
inequality elementwise.
- DataFrame.geCompare DataFrames for greater than inequality
or equality elementwise.
- DataFrame.gtCompare DataFrames for strictly greater than
inequality elementwise.
Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).
>>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300
Comparison with a scalar, using either the operator or method:
>>> df == 100 cost revenue A False True B False False C True False
>>> df.eq(100) cost revenue A False True B False False C True False
When other is a
Series
, the columns of a DataFrame are aligned with the index of other and broadcast:>>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False True
Use the method to control the broadcast axis:
>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True True
When comparing to an arbitrary sequence, the number of columns must match the number elements in other:
>>> df == [250, 100] cost revenue A True True B False False C False False
Use the method to control the axis:
>>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True False
Compare to a DataFrame of different shape.
>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150
>>> df.gt(other) cost revenue A False False B False False C False True D False False
Compare to a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225
>>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False
-
generalize
(max_offset)¶ Creates a new simplified geometry using a specified maximum offset tolerance.
- Parameters:
- max_offset
The maximum offset tolerance.
-
property
geoextent
¶ returns the extent of the spatial dataframe
-
property
geometry
¶ Get/Set the geometry data for SpatialDataFrame
-
property
geometry_type
¶ The geometry type: polygon, polyline, point, multipoint, multipatch, dimension, or annotation
-
get
(key, default=None)¶ Get item from object for given key (ex: DataFrame column).
Returns default value if not found.
key : object
value : same type as items contained in object
-
get_area
(method, units=None)¶ Returns the area of the feature using a measurement type.
- Parameters:
- method
PLANAR measurements reflect the projection of
geographic data onto the 2D surface (in other words, they will not take into account the curvature of the earth). GEODESIC, GREAT_ELLIPTIC, LOXODROME, and PRESERVE_SHAPE measurement types may be chosen as an alternative, if desired.
- units
Areal unit of measure keywords: ACRES | ARES | HECTARES
SQUARECENTIMETERS | SQUAREDECIMETERS | SQUAREINCHES | SQUAREFEETSQUAREKILOMETERS | SQUAREMETERS | SQUAREMILES |SQUAREMILLIMETERS | SQUAREYARDS
-
get_length
(method, units)¶ Returns the length of the feature using a measurement type.
- Parameters:
- method
PLANAR measurements reflect the projection of
geographic data onto the 2D surface (in other words, they will not take into account the curvature of the earth). GEODESIC, GREAT_ELLIPTIC, LOXODROME, and PRESERVE_SHAPE measurement types may be chosen as an alternative, if desired.
- units
Linear unit of measure keywords: CENTIMETERS |
DECIMETERS | FEET | INCHES | KILOMETERS | METERS | MILES | MILLIMETERS | NAUTICALMILES | YARDS
-
get_part
(index=None)¶ Returns an array of point objects for a particular part of geometry or an array containing a number of arrays, one for each part.
- Parameters:
- index
The index position of the geometry.
-
groupby
(by=None, axis=0, level=None, as_index: bool = True, sort: bool = True, group_keys: bool = True, squeeze: bool = False, observed: bool = False) → pandas.core.groupby.generic.DataFrameGroupBy¶ Group DataFrame using a mapper or by a Series of columns.
A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups.
- bymapping, function, label, or list of labels
Used to determine the groups for the groupby. If
by
is a function, it’s called on each value of the object’s index. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups (the Series’ values are first aligned; see.align()
method). If an ndarray is passed, the values are used as-is determine the groups. A label or list of labels may be passed to group by the columns inself
. Notice that a tuple is interpreted as a (single) key.- axis{0 or ‘index’, 1 or ‘columns’}, default 0
Split along rows (0) or columns (1).
- levelint, level name, or sequence of such, default None
If the axis is a MultiIndex (hierarchical), group by a particular level or levels.
- as_indexbool, default True
For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output.
- sortbool, default True
Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. Groupby preserves the order of rows within each group.
- group_keysbool, default True
When calling apply, add group keys to index to identify pieces.
- squeezebool, default False
Reduce the dimensionality of the return type if possible, otherwise return a consistent type.
- observedbool, default False
This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers.
New in version 0.23.0.
- DataFrameGroupBy
Returns a groupby object that contains information about the groups.
- resampleConvenience method for frequency conversion and resampling
of time series.
See the user guide for more.
>>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon', ... 'Parrot', 'Parrot'], ... 'Max Speed': [380., 370., 24., 26.]}) >>> df Animal Max Speed 0 Falcon 380.0 1 Falcon 370.0 2 Parrot 24.0 3 Parrot 26.0 >>> df.groupby(['Animal']).mean() Max Speed Animal Falcon 375.0 Parrot 25.0
Hierarchical Indexes
We can groupby different levels of a hierarchical index using the level parameter:
>>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'], ... ['Captive', 'Wild', 'Captive', 'Wild']] >>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type')) >>> df = pd.DataFrame({'Max Speed': [390., 350., 30., 20.]}, ... index=index) >>> df Max Speed Animal Type Falcon Captive 390.0 Wild 350.0 Parrot Captive 30.0 Wild 20.0 >>> df.groupby(level=0).mean() Max Speed Animal Falcon 370.0 Parrot 25.0 >>> df.groupby(level="Type").mean() Max Speed Type Captive 210.0 Wild 185.0
-
gt
(other, axis='columns', level=None)¶ Get Greater than of dataframe and other, element-wise (binary operator gt).
Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.
Equivalent to ==, =!, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- DataFrame of bool
Result of the comparison.
DataFrame.eq : Compare DataFrames for equality elementwise. DataFrame.ne : Compare DataFrames for inequality elementwise. DataFrame.le : Compare DataFrames for less than inequality
or equality elementwise.
- DataFrame.ltCompare DataFrames for strictly less than
inequality elementwise.
- DataFrame.geCompare DataFrames for greater than inequality
or equality elementwise.
- DataFrame.gtCompare DataFrames for strictly greater than
inequality elementwise.
Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).
>>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300
Comparison with a scalar, using either the operator or method:
>>> df == 100 cost revenue A False True B False False C True False
>>> df.eq(100) cost revenue A False True B False False C True False
When other is a
Series
, the columns of a DataFrame are aligned with the index of other and broadcast:>>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False True
Use the method to control the broadcast axis:
>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True True
When comparing to an arbitrary sequence, the number of columns must match the number elements in other:
>>> df == [250, 100] cost revenue A True True B False False C False False
Use the method to control the axis:
>>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True False
Compare to a DataFrame of different shape.
>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150
>>> df.gt(other) cost revenue A False False B False False C False True D False False
Compare to a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225
>>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False
-
head
(n: int = 5) → FrameOrSeries¶ Return the first n rows.
This function returns the first n rows for the object based on position. It is useful for quickly testing if your object has the right type of data in it.
For negative values of n, this function returns all rows except the last n rows, equivalent to
df[:-n]
.- nint, default 5
Number of rows to select.
- same type as caller
The first n rows of the caller object.
DataFrame.tail: Returns the last n rows.
>>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra
Viewing the first 5 lines
>>> df.head() animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey
Viewing the first n lines (three in this case)
>>> df.head(3) animal 0 alligator 1 bee 2 falcon
For negative values of n
>>> df.head(-3) animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot
-
hist
(column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, backend=None, **kwargs)¶ Make a histogram of the DataFrame’s.
A histogram is a representation of the distribution of data. This function calls
matplotlib.pyplot.hist()
, on each series in the DataFrame, resulting in one histogram per column.- dataDataFrame
The pandas object holding the data.
- columnstr or sequence
If passed, will be used to limit data to a subset of columns.
- byobject, optional
If passed, then used to form histograms for separate groups.
- gridbool, default True
Whether to show axis grid lines.
- xlabelsizeint, default None
If specified changes the x-axis label size.
- xrotfloat, default None
Rotation of x axis labels. For example, a value of 90 displays the x labels rotated 90 degrees clockwise.
- ylabelsizeint, default None
If specified changes the y-axis label size.
- yrotfloat, default None
Rotation of y axis labels. For example, a value of 90 displays the y labels rotated 90 degrees clockwise.
- axMatplotlib axes object, default None
The axes to plot the histogram on.
- sharexbool, default True if ax is None else False
In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in. Note that passing in both an ax and sharex=True will alter all x axis labels for all subplots in a figure.
- shareybool, default False
In case subplots=True, share y axis and set some y axis labels to invisible.
- figsizetuple
The size in inches of the figure to create. Uses the value in matplotlib.rcParams by default.
- layouttuple, optional
Tuple of (rows, columns) for the layout of the histograms.
- binsint or sequence, default 10
Number of histogram bins to be used. If an integer is given, bins + 1 bin edges are calculated and returned. If bins is a sequence, gives bin edges, including left edge of first bin and right edge of last bin. In this case, bins is returned unmodified.
- backendstr, default None
Backend to use instead of the backend specified in the option
plotting.backend
. For instance, ‘matplotlib’. Alternatively, to specify theplotting.backend
for the whole session, setpd.options.plotting.backend
.New in version 1.0.0.
- **kwargs
All other plotting keyword arguments to be passed to
matplotlib.pyplot.hist()
.
matplotlib.AxesSubplot or numpy.ndarray of them
matplotlib.pyplot.hist : Plot a histogram using matplotlib.
-
property
hull_rectangle
¶ A space-delimited string of the coordinate pairs of the convex hull rectangle.
-
property
iat
¶ Access a single value for a row/column pair by integer position.
Similar to
iloc
, in that both provide integer-based lookups. Useiat
if you only need to get or set a single value in a DataFrame or Series.- IndexError
When integer position is out of bounds.
DataFrame.at : Access a single value for a row/column label pair. DataFrame.loc : Access a group of rows and columns by label(s). DataFrame.iloc : Access a group of rows and columns by integer position(s).
>>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... columns=['A', 'B', 'C']) >>> df A B C 0 0 2 3 1 0 4 1 2 10 20 30
Get value at specified row/column pair
>>> df.iat[1, 2] 1
Set value at specified row/column pair
>>> df.iat[1, 2] = 10 >>> df.iat[1, 2] 10
Get value within a series
>>> df.loc[0].iat[1] 2
-
idxmax
(axis=0, skipna=True) → pandas.core.series.Series¶ Return index of first occurrence of maximum over requested axis.
NA/null values are excluded.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis to use. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.
- skipnabool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
- Series
Indexes of maxima along the specified axis.
- ValueError
If the row/column is empty
Series.idxmax
This method is the DataFrame version of
ndarray.argmax
.
-
idxmin
(axis=0, skipna=True) → pandas.core.series.Series¶ Return index of first occurrence of minimum over requested axis.
NA/null values are excluded.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis to use. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.
- skipnabool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
- Series
Indexes of minima along the specified axis.
- ValueError
If the row/column is empty
Series.idxmin
This method is the DataFrame version of
ndarray.argmin
.
-
property
iloc
¶ Purely integer-location based indexing for selection by position.
.iloc[]
is primarily integer position based (from0
tolength-1
of the axis), but may also be used with a boolean array.Allowed inputs are:
An integer, e.g.
5
.A list or array of integers, e.g.
[4, 3, 0]
.A slice object with ints, e.g.
1:7
.A boolean array.
A
callable
function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). This is useful in method chains, when you don’t have a reference to the calling object, but would like to base your selection on some value.
.iloc
will raiseIndexError
if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics).See more at Selection by Position.
DataFrame.iat : Fast integer location scalar accessor. DataFrame.loc : Purely label-location based indexer for selection by label. Series.iloc : Purely integer-location based indexing for
selection by position.
>>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4}, ... {'a': 100, 'b': 200, 'c': 300, 'd': 400}, ... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }] >>> df = pd.DataFrame(mydict) >>> df a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000
Indexing just the rows
With a scalar integer.
>>> type(df.iloc[0]) <class 'pandas.core.series.Series'> >>> df.iloc[0] a 1 b 2 c 3 d 4 Name: 0, dtype: int64
With a list of integers.
>>> df.iloc[[0]] a b c d 0 1 2 3 4 >>> type(df.iloc[[0]]) <class 'pandas.core.frame.DataFrame'>
>>> df.iloc[[0, 1]] a b c d 0 1 2 3 4 1 100 200 300 400
With a slice object.
>>> df.iloc[:3] a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000
With a boolean mask the same length as the index.
>>> df.iloc[[True, False, True]] a b c d 0 1 2 3 4 2 1000 2000 3000 4000
With a callable, useful in method chains. The x passed to the
lambda
is the DataFrame being sliced. This selects the rows whose index label even.>>> df.iloc[lambda x: x.index % 2 == 0] a b c d 0 1 2 3 4 2 1000 2000 3000 4000
Indexing both axes
You can mix the indexer types for the index and columns. Use
:
to select the entire axis.With scalar integers.
>>> df.iloc[0, 1] 2
With lists of integers.
>>> df.iloc[[0, 2], [1, 3]] b d 0 2 4 2 2000 4000
With slice objects.
>>> df.iloc[1:3, 0:3] a b c 1 100 200 300 2 1000 2000 3000
With a boolean array whose length matches the columns.
>>> df.iloc[:, [True, False, True, False]] a c 0 1 3 1 100 300 2 1000 3000
With a callable function that expects the Series or DataFrame.
>>> df.iloc[:, lambda df: [0, 2]] a c 0 1 3 1 100 300 2 1000 3000
-
index
¶ The index (row labels) of the DataFrame.
-
infer_objects
() → FrameOrSeries¶ Attempt to infer better dtypes for object columns.
Attempts soft conversion of object-dtyped columns, leaving non-object and unconvertible columns unchanged. The inference rules are the same as during normal Series/DataFrame construction.
New in version 0.21.0.
converted : same type as input object
to_datetime : Convert argument to datetime. to_timedelta : Convert argument to timedelta. to_numeric : Convert argument to numeric type. convert_dtypes : Convert argument to best possible dtype.
>>> df = pd.DataFrame({"A": ["a", 1, 2, 3]}) >>> df = df.iloc[1:] >>> df A 1 1 2 2 3 3
>>> df.dtypes A object dtype: object
>>> df.infer_objects().dtypes A int64 dtype: object
-
info
(verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None)¶ Concise summary of a DataFrame.
- verbose{None, True, False}, optional
Whether to print the full summary. None follows the display.max_info_columns setting. True or False overrides the display.max_info_columns setting.
buf : writable buffer, defaults to sys.stdout max_cols : int, default None
Determines whether full summary or short summary is printed. None follows the display.max_info_columns setting.
- memory_usageboolean/string, default None
Specifies whether total memory usage of the DataFrame elements (including index) should be displayed. None follows the display.memory_usage setting. True or False overrides the display.memory_usage setting. A value of ‘deep’ is equivalent of True, with deep introspection. Memory usage is shown in human-readable units (base-2 representation).
- null_countsboolean, default None
Whether to show the non-null counts
If None, then only show if the frame is smaller than max_info_rows and max_info_columns.
If True, always show counts.
If False, never show counts.
-
insert
(loc, column, value, allow_duplicates=False) → None¶ Insert column into DataFrame at specified location.
Raises a ValueError if column is already contained in the DataFrame, unless allow_duplicates is set to True.
- locint
Insertion index. Must verify 0 <= loc <= len(columns).
- columnstr, number, or hashable object
Label of the inserted column.
value : int, Series, or array-like allow_duplicates : bool, optional
-
interpolate
(method='linear', axis=0, limit=None, inplace=False, limit_direction='forward', limit_area=None, downcast=None, **kwargs)¶ Interpolate values according to different methods.
Please note that only
method='linear'
is supported for DataFrame/Series with a MultiIndex.- methodstr, default ‘linear’
Interpolation technique to use. One of:
‘linear’: Ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes.
‘time’: Works on daily and higher resolution data to interpolate given length of interval.
‘index’, ‘values’: use the actual numerical values of the index.
‘pad’: Fill in NaNs using existing values.
‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘spline’, ‘barycentric’, ‘polynomial’: Passed to scipy.interpolate.interp1d. These methods use the numerical values of the index. Both ‘polynomial’ and ‘spline’ require that you also specify an order (int), e.g.
df.interpolate(method='polynomial', order=5)
.‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’, ‘akima’: Wrappers around the SciPy interpolation methods of similar names. See Notes.
‘from_derivatives’: Refers to scipy.interpolate.BPoly.from_derivatives which replaces ‘piecewise_polynomial’ interpolation method in scipy 0.18.
- axis{0 or ‘index’, 1 or ‘columns’, None}, default None
Axis to interpolate along.
- limitint, optional
Maximum number of consecutive NaNs to fill. Must be greater than 0.
- inplacebool, default False
Update the data in place if possible.
- limit_direction{‘forward’, ‘backward’, ‘both’}, default ‘forward’
If limit is specified, consecutive NaNs will be filled in this direction.
- limit_area{None, ‘inside’, ‘outside’}, default None
If limit is specified, consecutive NaNs will be filled with this restriction.
None
: No fill restriction.‘inside’: Only fill NaNs surrounded by valid values (interpolate).
‘outside’: Only fill NaNs outside valid values (extrapolate).
New in version 0.23.0.
- downcastoptional, ‘infer’ or None, defaults to None
Downcast dtypes if possible.
- **kwargs
Keyword arguments to pass on to the interpolating function.
- Series or DataFrame
Returns the same object type as the caller, interpolated at some or all
NaN
values.
fillna : Fill missing values using different methods. scipy.interpolate.Akima1DInterpolator : Piecewise cubic polynomials
(Akima interpolator).
- scipy.interpolate.BPoly.from_derivativesPiecewise polynomial in the
Bernstein basis.
scipy.interpolate.interp1d : Interpolate a 1-D function. scipy.interpolate.KroghInterpolator : Interpolate polynomial (Krogh
interpolator).
- scipy.interpolate.PchipInterpolatorPCHIP 1-d monotonic cubic
interpolation.
scipy.interpolate.CubicSpline : Cubic spline data interpolator.
The ‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’ and ‘akima’ methods are wrappers around the respective SciPy implementations of similar names. These use the actual numerical values of the index. For more information on their behavior, see the SciPy documentation and SciPy tutorial.
Filling in
NaN
in aSeries
via linear interpolation.>>> s = pd.Series([0, 1, np.nan, 3]) >>> s 0 0.0 1 1.0 2 NaN 3 3.0 dtype: float64 >>> s.interpolate() 0 0.0 1 1.0 2 2.0 3 3.0 dtype: float64
Filling in
NaN
in a Series by padding, but filling at most two consecutiveNaN
at a time.>>> s = pd.Series([np.nan, "single_one", np.nan, ... "fill_two_more", np.nan, np.nan, np.nan, ... 4.71, np.nan]) >>> s 0 NaN 1 single_one 2 NaN 3 fill_two_more 4 NaN 5 NaN 6 NaN 7 4.71 8 NaN dtype: object >>> s.interpolate(method='pad', limit=2) 0 NaN 1 single_one 2 single_one 3 fill_two_more 4 fill_two_more 5 fill_two_more 6 NaN 7 4.71 8 4.71 dtype: object
Filling in
NaN
in a Series via polynomial interpolation or splines: Both ‘polynomial’ and ‘spline’ methods require that you also specify anorder
(int).>>> s = pd.Series([0, 2, np.nan, 8]) >>> s.interpolate(method='polynomial', order=2) 0 0.000000 1 2.000000 2 4.666667 3 8.000000 dtype: float64
Fill the DataFrame forward (that is, going down) along each column using linear interpolation.
Note how the last entry in column ‘a’ is interpolated differently, because there is no entry after it to use for interpolation. Note how the first entry in column ‘b’ remains
NaN
, because there is no entry before it to use for interpolation.>>> df = pd.DataFrame([(0.0, np.nan, -1.0, 1.0), ... (np.nan, 2.0, np.nan, np.nan), ... (2.0, 3.0, np.nan, 9.0), ... (np.nan, 4.0, -4.0, 16.0)], ... columns=list('abcd')) >>> df a b c d 0 0.0 NaN -1.0 1.0 1 NaN 2.0 NaN NaN 2 2.0 3.0 NaN 9.0 3 NaN 4.0 -4.0 16.0 >>> df.interpolate(method='linear', limit_direction='forward', axis=0) a b c d 0 0.0 NaN -1.0 1.0 1 1.0 2.0 -2.0 5.0 2 2.0 3.0 -3.0 9.0 3 2.0 4.0 -4.0 16.0
Using polynomial interpolation.
>>> df['d'].interpolate(method='polynomial', order=2) 0 1.0 1 4.0 2 9.0 3 16.0 Name: d, dtype: float64
-
intersect
(second_geometry, dimension)¶ Constructs a geometry that is the geometric intersection of the two input geometries. Different dimension values can be used to create different shape types. The intersection of two geometries of the same shape type is a geometry containing only the regions of overlap between the original geometries.
- Paramters:
- second_geometry
a second geometry
- dimension
The topological dimension (shape type) of the
- resulting geometry.
1 -A zero-dimensional geometry (point or multipoint). 2 -A one-dimensional geometry (polyline). 4 -A two-dimensional geometry (polygon).
-
property
is_empty
¶ Return True for each empty geometry, False for non-empty
-
property
is_multipart
¶ True, if the number of parts for the geometry is more than 1
-
isin
(values) → pandas.core.frame.DataFrame¶ Whether each element in the DataFrame is contained in values.
- valuesiterable, Series, DataFrame or dict
The result will only be true at a location if all the labels match. If values is a Series, that’s the index. If values is a dict, the keys must be the column names, which must match. If values is a DataFrame, then both the index and column labels must match.
- DataFrame
DataFrame of booleans showing whether each element in the DataFrame is contained in values.
DataFrame.eq: Equality test for DataFrame. Series.isin: Equivalent method on Series. Series.str.contains: Test if pattern or regex is contained within a
string of a Series or Index.
>>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog']) >>> df num_legs num_wings falcon 2 2 dog 4 0
When
values
is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings)>>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True
When
values
is a dict, we can pass values to check for each column separately:>>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True
When
values
is a Series or DataFrame the index and column must match. Note that ‘falcon’ does not match based on the number of legs in df2.>>> other = pd.DataFrame({'num_legs': [8, 2], 'num_wings': [0, 2]}, ... index=['spider', 'falcon']) >>> df.isin(other) num_legs num_wings falcon True True dog False False
-
isna
() → pandas.core.frame.DataFrame¶ Detect missing values.
Return a boolean same-sized object indicating if the values are NA. NA values, such as None or
numpy.NaN
, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings''
ornumpy.inf
are not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True
).- DataFrame
Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.
DataFrame.isnull : Alias of isna. DataFrame.notna : Boolean inverse of isna. DataFrame.dropna : Omit axes labels with missing values. isna : Top-level isna.
Show which entries in a DataFrame are NA.
>>> df = pd.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker
>>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False
Show which entries in a Series are NA.
>>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64
>>> ser.isna() 0 False 1 False 2 True dtype: bool
-
isnull
() → pandas.core.frame.DataFrame¶ Detect missing values.
Return a boolean same-sized object indicating if the values are NA. NA values, such as None or
numpy.NaN
, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings''
ornumpy.inf
are not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True
).- DataFrame
Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.
DataFrame.isnull : Alias of isna. DataFrame.notna : Boolean inverse of isna. DataFrame.dropna : Omit axes labels with missing values. isna : Top-level isna.
Show which entries in a DataFrame are NA.
>>> df = pd.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker
>>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False
Show which entries in a Series are NA.
>>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64
>>> ser.isna() 0 False 1 False 2 True dtype: bool
-
items
() → Iterable[Tuple[collections.abc.Hashable, pandas.core.series.Series]]¶ Iterate over (column name, Series) pairs.
Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series.
- labelobject
The column names for the DataFrame being iterated over.
- contentSeries
The column entries belonging to each label, as a Series.
- DataFrame.iterrowsIterate over DataFrame rows as
(index, Series) pairs.
- DataFrame.itertuplesIterate over DataFrame rows as namedtuples
of the values.
>>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'], ... 'population': [1864, 22000, 80000]}, ... index=['panda', 'polar', 'koala']) >>> df species population panda bear 1864 polar bear 22000 koala marsupial 80000 >>> for label, content in df.items(): ... print('label:', label) ... print('content:', content, sep='\n') ... label: species content: panda bear polar bear koala marsupial Name: species, dtype: object label: population content: panda 1864 polar 22000 koala 80000 Name: population, dtype: int64
-
iteritems
() → Iterable[Tuple[collections.abc.Hashable, pandas.core.series.Series]]¶ Iterate over (column name, Series) pairs.
Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series.
- labelobject
The column names for the DataFrame being iterated over.
- contentSeries
The column entries belonging to each label, as a Series.
- DataFrame.iterrowsIterate over DataFrame rows as
(index, Series) pairs.
- DataFrame.itertuplesIterate over DataFrame rows as namedtuples
of the values.
>>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'], ... 'population': [1864, 22000, 80000]}, ... index=['panda', 'polar', 'koala']) >>> df species population panda bear 1864 polar bear 22000 koala marsupial 80000 >>> for label, content in df.items(): ... print('label:', label) ... print('content:', content, sep='\n') ... label: species content: panda bear polar bear koala marsupial Name: species, dtype: object label: population content: panda 1864 polar 22000 koala 80000 Name: population, dtype: int64
-
iterrows
() → Iterable[Tuple[collections.abc.Hashable, pandas.core.series.Series]]¶ Iterate over DataFrame rows as (index, Series) pairs.
- indexlabel or tuple of label
The index of the row. A tuple for a MultiIndex.
- dataSeries
The data of the row as a Series.
- itgenerator
A generator that iterates over the rows of the frame.
DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. DataFrame.items : Iterate over (column name, Series) pairs.
Because
iterrows
returns a Series for each row, it does not preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example,>>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float']) >>> row = next(df.iterrows())[1] >>> row int 1.0 float 1.5 Name: 0, dtype: float64 >>> print(row['int'].dtype) float64 >>> print(df['int'].dtype) int64
To preserve dtypes while iterating over the rows, it is better to use
itertuples()
which returns namedtuples of the values and which is generally faster thaniterrows
.You should never modify something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect.
-
itertuples
(index=True, name='Pandas')¶ Iterate over DataFrame rows as namedtuples.
- indexbool, default True
If True, return the index as the first element of the tuple.
- namestr or None, default “Pandas”
The name of the returned namedtuples or None to return regular tuples.
- iterator
An object to iterate over namedtuples for each row in the DataFrame with the first field possibly being the index and following fields being the column values.
- DataFrame.iterrowsIterate over DataFrame rows as (index, Series)
pairs.
DataFrame.items : Iterate over (column name, Series) pairs.
The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. On python versions < 3.7 regular tuples are returned for DataFrames with a large number of columns (>254).
>>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]}, ... index=['dog', 'hawk']) >>> df num_legs num_wings dog 4 0 hawk 2 2 >>> for row in df.itertuples(): ... print(row) ... Pandas(Index='dog', num_legs=4, num_wings=0) Pandas(Index='hawk', num_legs=2, num_wings=2)
By setting the index parameter to False we can remove the index as the first element of the tuple:
>>> for row in df.itertuples(index=False): ... print(row) ... Pandas(num_legs=4, num_wings=0) Pandas(num_legs=2, num_wings=2)
With the name parameter set we set a custom name for the yielded namedtuples:
>>> for row in df.itertuples(name='Animal'): ... print(row) ... Animal(Index='dog', num_legs=4, num_wings=0) Animal(Index='hawk', num_legs=2, num_wings=2)
-
join
(other, on=None, how='left', lsuffix='', rsuffix='', sort=False) → pandas.core.frame.DataFrame¶ Join columns of another DataFrame.
Join columns with other DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list.
- otherDataFrame, Series, or list of DataFrame
Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame.
- onstr, list of str, or array-like, optional
Column or index level name(s) in the caller to join on the index in other, otherwise joins index-on-index. If multiple values given, the other DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation.
- how{‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘left’
How to handle the operation of the two objects.
left: use calling frame’s index (or column if on is specified)
right: use other’s index.
outer: form union of calling frame’s index (or column if on is specified) with other’s index, and sort it. lexicographically.
inner: form intersection of calling frame’s index (or column if on is specified) with other’s index, preserving the order of the calling’s one.
- lsuffixstr, default ‘’
Suffix to use from left frame’s overlapping columns.
- rsuffixstr, default ‘’
Suffix to use from right frame’s overlapping columns.
- sortbool, default False
Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword).
- DataFrame
A dataframe containing columns from both the caller and other.
DataFrame.merge : For column(s)-on-columns(s) operations.
Parameters on, lsuffix, and rsuffix are not supported when passing a list of DataFrame objects.
Support for specifying index levels as the on parameter was added in version 0.23.0.
>>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
>>> df key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 4 K4 A4 5 K5 A5
>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']})
>>> other key B 0 K0 B0 1 K1 B1 2 K2 B2
Join DataFrames using their indexes.
>>> df.join(other, lsuffix='_caller', rsuffix='_other') key_caller A key_other B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 NaN NaN 4 K4 A4 NaN NaN 5 K5 A5 NaN NaN
If we want to join using the key columns, we need to set key to be the index in both df and other. The joined DataFrame will have key as its index.
>>> df.set_index('key').join(other.set_index('key')) A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaN
Another option to join using the key columns is to use the on parameter. DataFrame.join always uses other’s index but we can use any column in df. This method preserves the original DataFrame’s index in the result.
>>> df.join(other.set_index('key'), on='key') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K2 A2 B2 3 K3 A3 NaN 4 K4 A4 NaN 5 K5 A5 NaN
-
keys
()¶ Get the ‘info axis’ (see Indexing for more).
This is index for Series, columns for DataFrame.
- Index
Info axis.
-
kurt
(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)¶ Return unbiased kurtosis over requested axis.
Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
- axis{index (0), columns (1)}
Axis for the function to be applied on.
- skipnabool, default True
Exclude NA/null values when computing the result.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- numeric_onlybool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- **kwargs
Additional keyword arguments to be passed to the function.
Series or DataFrame (if level specified)
-
kurtosis
(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)¶ Return unbiased kurtosis over requested axis.
Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
- axis{index (0), columns (1)}
Axis for the function to be applied on.
- skipnabool, default True
Exclude NA/null values when computing the result.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- numeric_onlybool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- **kwargs
Additional keyword arguments to be passed to the function.
Series or DataFrame (if level specified)
-
property
label_point
¶ The point at which the label is located. The labelPoint is always located within or on a feature.
-
last
(offset) → FrameOrSeries¶ Method to subset final periods of time series data based on a date offset.
offset : str, DateOffset, dateutil.relativedelta
subset : same type as caller
- TypeError
If the index is not a
DatetimeIndex
first : Select initial periods of time series based on a date offset. at_time : Select values at a particular time of the day. between_time : Select values between particular times of the day.
>>> i = pd.date_range('2018-04-09', periods=4, freq='2D') >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i) >>> ts A 2018-04-09 1 2018-04-11 2 2018-04-13 3 2018-04-15 4
Get the rows for the last 3 days:
>>> ts.last('3D') A 2018-04-13 3 2018-04-15 4
Notice the data for 3 last calender days were returned, not the last 3 observed days in the dataset, and therefore data for 2018-04-11 was not returned.
-
property
last_point
¶ The last coordinate of the feature.
-
last_valid_index
()¶ Return index for last non-NA/null value.
scalar : type of index
If all elements are non-NA/null, returns None. Also returns None for empty Series/DataFrame.
-
le
(other, axis='columns', level=None)¶ Get Less than or equal to of dataframe and other, element-wise (binary operator le).
Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.
Equivalent to ==, =!, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- DataFrame of bool
Result of the comparison.
DataFrame.eq : Compare DataFrames for equality elementwise. DataFrame.ne : Compare DataFrames for inequality elementwise. DataFrame.le : Compare DataFrames for less than inequality
or equality elementwise.
- DataFrame.ltCompare DataFrames for strictly less than
inequality elementwise.
- DataFrame.geCompare DataFrames for greater than inequality
or equality elementwise.
- DataFrame.gtCompare DataFrames for strictly greater than
inequality elementwise.
Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).
>>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300
Comparison with a scalar, using either the operator or method:
>>> df == 100 cost revenue A False True B False False C True False
>>> df.eq(100) cost revenue A False True B False False C True False
When other is a
Series
, the columns of a DataFrame are aligned with the index of other and broadcast:>>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False True
Use the method to control the broadcast axis:
>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True True
When comparing to an arbitrary sequence, the number of columns must match the number elements in other:
>>> df == [250, 100] cost revenue A True True B False False C False False
Use the method to control the axis:
>>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True False
Compare to a DataFrame of different shape.
>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150
>>> df.gt(other) cost revenue A False False B False False C False True D False False
Compare to a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225
>>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False
-
property
length
¶ The length of the linear feature. Zero for point and multipoint feature types.
-
property
length3D
¶ The 3D length of the linear feature. Zero for point and multipoint feature types.
-
property
loc
¶ Access a group of rows and columns by label(s) or a boolean array.
.loc[]
is primarily label based, but may also be used with a boolean array.Allowed inputs are:
A single label, e.g.
5
or'a'
, (note that5
is interpreted as a label of the index, and never as an integer position along the index).A list or array of labels, e.g.
['a', 'b', 'c']
.A slice object with labels, e.g.
'a':'f'
.Warning
Note that contrary to usual python slices, both the start and the stop are included
A boolean array of the same length as the axis being sliced, e.g.
[True, False, True]
.A
callable
function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above)
See more at Selection by Label
- KeyError
If any items are not found.
DataFrame.at : Access a single value for a row/column label pair. DataFrame.iloc : Access group of rows and columns by integer position(s). DataFrame.xs : Returns a cross-section (row(s) or column(s)) from the
Series/DataFrame.
Series.loc : Access group of values using labels.
Getting values
>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) >>> df max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8
Single label. Note this returns the row as a Series.
>>> df.loc['viper'] max_speed 4 shield 5 Name: viper, dtype: int64
List of labels. Note using
[[]]
returns a DataFrame.>>> df.loc[['viper', 'sidewinder']] max_speed shield viper 4 5 sidewinder 7 8
Single label for row and column
>>> df.loc['cobra', 'shield'] 2
Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice are included.
>>> df.loc['cobra':'viper', 'max_speed'] cobra 1 viper 4 Name: max_speed, dtype: int64
Boolean list with the same length as the row axis
>>> df.loc[[False, False, True]] max_speed shield sidewinder 7 8
Conditional that returns a boolean Series
>>> df.loc[df['shield'] > 6] max_speed shield sidewinder 7 8
Conditional that returns a boolean Series with column labels specified
>>> df.loc[df['shield'] > 6, ['max_speed']] max_speed sidewinder 7
Callable that returns a boolean Series
>>> df.loc[lambda df: df['shield'] == 8] max_speed shield sidewinder 7 8
Setting values
Set value for all items matching the list of labels
>>> df.loc[['viper', 'sidewinder'], ['shield']] = 50 >>> df max_speed shield cobra 1 2 viper 4 50 sidewinder 7 50
Set value for an entire row
>>> df.loc['cobra'] = 10 >>> df max_speed shield cobra 10 10 viper 4 50 sidewinder 7 50
Set value for an entire column
>>> df.loc[:, 'max_speed'] = 30 >>> df max_speed shield cobra 30 10 viper 30 50 sidewinder 30 50
Set value for rows matching callable condition
>>> df.loc[df['shield'] > 35] = 0 >>> df max_speed shield cobra 30 10 viper 0 0 sidewinder 0 0
Getting values on a DataFrame with an index that has integer labels
Another example using integers for the index
>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=[7, 8, 9], columns=['max_speed', 'shield']) >>> df max_speed shield 7 1 2 8 4 5 9 7 8
Slice with integer labels for rows. As mentioned above, note that both the start and stop of the slice are included.
>>> df.loc[7:9] max_speed shield 7 1 2 8 4 5 9 7 8
Getting values with a MultiIndex
A number of examples using a DataFrame with a MultiIndex
>>> tuples = [ ... ('cobra', 'mark i'), ('cobra', 'mark ii'), ... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'), ... ('viper', 'mark ii'), ('viper', 'mark iii') ... ] >>> index = pd.MultiIndex.from_tuples(tuples) >>> values = [[12, 2], [0, 4], [10, 20], ... [1, 4], [7, 1], [16, 36]] >>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index) >>> df max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36
Single label. Note this returns a DataFrame with a single index.
>>> df.loc['cobra'] max_speed shield mark i 12 2 mark ii 0 4
Single index tuple. Note this returns a Series.
>>> df.loc[('cobra', 'mark ii')] max_speed 0 shield 4 Name: (cobra, mark ii), dtype: int64
Single label for row and column. Similar to passing in a tuple, this returns a Series.
>>> df.loc['cobra', 'mark i'] max_speed 12 shield 2 Name: (cobra, mark i), dtype: int64
Single tuple. Note using
[[]]
returns a DataFrame.>>> df.loc[[('cobra', 'mark ii')]] max_speed shield cobra mark ii 0 4
Single tuple for the index with a single label for the column
>>> df.loc[('cobra', 'mark i'), 'shield'] 2
Slice from index tuple to single label
>>> df.loc[('cobra', 'mark i'):'viper'] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36
Slice from index tuple to index tuple
>>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1
-
lookup
(row_labels, col_labels) → numpy.ndarray¶ Label-based “fancy indexing” function for DataFrame.
Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair.
- row_labelssequence
The row labels to use for lookup.
- col_labelssequence
The column labels to use for lookup.
numpy.ndarray
- valuesndarray
The found values
-
lt
(other, axis='columns', level=None)¶ Get Less than of dataframe and other, element-wise (binary operator lt).
Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.
Equivalent to ==, =!, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- DataFrame of bool
Result of the comparison.
DataFrame.eq : Compare DataFrames for equality elementwise. DataFrame.ne : Compare DataFrames for inequality elementwise. DataFrame.le : Compare DataFrames for less than inequality
or equality elementwise.
- DataFrame.ltCompare DataFrames for strictly less than
inequality elementwise.
- DataFrame.geCompare DataFrames for greater than inequality
or equality elementwise.
- DataFrame.gtCompare DataFrames for strictly greater than
inequality elementwise.
Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).
>>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300
Comparison with a scalar, using either the operator or method:
>>> df == 100 cost revenue A False True B False False C True False
>>> df.eq(100) cost revenue A False True B False False C True False
When other is a
Series
, the columns of a DataFrame are aligned with the index of other and broadcast:>>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False True
Use the method to control the broadcast axis:
>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True True
When comparing to an arbitrary sequence, the number of columns must match the number elements in other:
>>> df == [250, 100] cost revenue A True True B False False C False False
Use the method to control the axis:
>>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True False
Compare to a DataFrame of different shape.
>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150
>>> df.gt(other) cost revenue A False False B False False C False True D False False
Compare to a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225
>>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False
-
mad
(axis=None, skipna=None, level=None)¶ Return the mean absolute deviation of the values for the requested axis.
- axis{index (0), columns (1)}
Axis for the function to be applied on.
- skipnabool, default True
Exclude NA/null values when computing the result.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- numeric_onlybool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- **kwargs
Additional keyword arguments to be passed to the function.
Series or DataFrame (if level specified)
-
mask
(cond, other=nan, inplace=False, axis=None, level=None, errors='raise', try_cast=False)¶ Replace values where the condition is True.
- condbool Series/DataFrame, array-like, or callable
Where cond is False, keep the original value. Where True, replace with corresponding value from other. If cond is callable, it is computed on the Series/DataFrame and should return boolean Series/DataFrame or array. The callable must not change input Series/DataFrame (though pandas doesn’t check it).
- otherscalar, Series/DataFrame, or callable
Entries where cond is True are replaced with corresponding value from other. If other is callable, it is computed on the Series/DataFrame and should return scalar or Series/DataFrame. The callable must not change input Series/DataFrame (though pandas doesn’t check it).
- inplacebool, default False
Whether to perform the operation in place on the data.
- axisint, default None
Alignment axis if needed.
- levelint, default None
Alignment level if needed.
- errorsstr, {‘raise’, ‘ignore’}, default ‘raise’
Note that currently this parameter won’t affect the results and will always coerce to a suitable dtype.
‘raise’ : allow exceptions to be raised.
‘ignore’ : suppress exceptions. On error return original object.
- try_castbool, default False
Try to cast the result back to the input type (if possible).
Same type as caller
DataFrame.where()
Return an object of same shape asself.
The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if
cond
isFalse
the element is used; otherwise the corresponding element from the DataFrameother
is used.The signature for
DataFrame.where()
differs fromnumpy.where()
. Roughlydf1.where(m, df2)
is equivalent tonp.where(m, df1, df2)
.For further details and examples see the
mask
documentation in indexing.>>> s = pd.Series(range(5)) >>> s.where(s > 0) 0 NaN 1 1.0 2 2.0 3 3.0 4 4.0 dtype: float64
>>> s.mask(s > 0) 0 0.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64
>>> s.where(s > 1, 10) 0 10 1 10 2 2 3 3 4 4 dtype: int64
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) >>> df A B 0 0 1 1 2 3 2 4 5 3 6 7 4 8 9 >>> m = df % 3 == 0 >>> df.where(m, -df) A B 0 0 -1 1 -2 3 2 -4 -5 3 6 -7 4 -8 9 >>> df.where(m, -df) == np.where(m, df, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True >>> df.where(m, -df) == df.mask(~m, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True
-
max
(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)¶ Return the maximum of the values for the requested axis.
If you want the index of the maximum, use
idxmax
. This is the equivalent of thenumpy.ndarray
methodargmax
.- axis{index (0), columns (1)}
Axis for the function to be applied on.
- skipnabool, default True
Exclude NA/null values when computing the result.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- numeric_onlybool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- **kwargs
Additional keyword arguments to be passed to the function.
Series or DataFrame (if level specified)
Series.sum : Return the sum. Series.min : Return the minimum. Series.max : Return the maximum. Series.idxmin : Return the index of the minimum. Series.idxmax : Return the index of the maximum. DataFrame.sum : Return the sum over the requested axis. DataFrame.min : Return the minimum over the requested axis. DataFrame.max : Return the maximum over the requested axis. DataFrame.idxmin : Return the index of the minimum over the requested axis. DataFrame.idxmax : Return the index of the maximum over the requested axis.
>>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64
>>> s.max() 8
Max using level names, as well as indices.
>>> s.max(level='blooded') blooded warm 4 cold 8 Name: legs, dtype: int64
>>> s.max(level=0) blooded warm 4 cold 8 Name: legs, dtype: int64
-
mean
(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)¶ Return the mean of the values for the requested axis.
- axis{index (0), columns (1)}
Axis for the function to be applied on.
- skipnabool, default True
Exclude NA/null values when computing the result.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- numeric_onlybool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- **kwargs
Additional keyword arguments to be passed to the function.
Series or DataFrame (if level specified)
-
measure_on_line
(second_geometry, as_percentage=False)¶ Returns a measure from the start point of this line to the in_point.
- Paramters:
- second_geometry
a second geometry
- as_percentage
If False, the measure will be returned as a
distance; if True, the measure will be returned as a percentage.
-
median
(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)¶ Return the median of the values for the requested axis.
- axis{index (0), columns (1)}
Axis for the function to be applied on.
- skipnabool, default True
Exclude NA/null values when computing the result.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- numeric_onlybool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- **kwargs
Additional keyword arguments to be passed to the function.
Series or DataFrame (if level specified)
-
melt
(id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None) → pandas.core.frame.DataFrame¶ Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.
This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (id_vars), while all other columns, considered measured variables (value_vars), are “unpivoted” to the row axis, leaving just two non-identifier columns, ‘variable’ and ‘value’. .. versionadded:: 0.20.0
- id_varstuple, list, or ndarray, optional
Column(s) to use as identifier variables.
- value_varstuple, list, or ndarray, optional
Column(s) to unpivot. If not specified, uses all columns that are not set as id_vars.
- var_namescalar
Name to use for the ‘variable’ column. If None it uses
frame.columns.name
or ‘variable’.- value_namescalar, default ‘value’
Name to use for the ‘value’ column.
- col_levelint or str, optional
If columns are a MultiIndex then use this level to melt.
- DataFrame
Unpivoted DataFrame.
melt pivot_table DataFrame.pivot Series.explode
>>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6
>>> df.melt(id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5
>>> df.melt(id_vars=['A'], value_vars=['B', 'C']) A variable value 0 a B 1 1 b B 3 2 c B 5 3 a C 2 4 b C 4 5 c C 6
The names of ‘variable’ and ‘value’ columns can be customized:
>>> df.melt(id_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5
If you have multi-index columns:
>>> df.columns = [list('ABC'), list('DEF')] >>> df A B C D E F 0 a 1 2 1 b 3 4 2 c 5 6
>>> df.melt(col_level=0, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5
>>> df.melt(id_vars=[('A', 'D')], value_vars=[('B', 'E')]) (A, D) variable_0 variable_1 value 0 a B E 1 1 b B E 3 2 c B E 5
-
memory_usage
(index=True, deep=False) → pandas.core.series.Series¶ Return the memory usage of each column in bytes.
The memory usage can optionally include the contribution of the index and elements of object dtype.
This value is displayed in DataFrame.info by default. This can be suppressed by setting
pandas.options.display.memory_usage
to False.- indexbool, default True
Specifies whether to include the memory usage of the DataFrame’s index in returned Series. If
index=True
, the memory usage of the index is the first item in the output.- deepbool, default False
If True, introspect the data deeply by interrogating object dtypes for system-level memory consumption, and include it in the returned values.
- Series
A Series whose index is the original column names and whose values is the memory usage of each column in bytes.
- numpy.ndarray.nbytesTotal bytes consumed by the elements of an
ndarray.
Series.memory_usage : Bytes consumed by a Series. Categorical : Memory-efficient array for string values with
many repeated values.
DataFrame.info : Concise summary of a DataFrame.
>>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool'] >>> data = dict([(t, np.ones(shape=5000).astype(t)) ... for t in dtypes]) >>> df = pd.DataFrame(data) >>> df.head() int64 float64 complex128 object bool 0 1 1.0 1.000000+0.000000j 1 True 1 1 1.0 1.000000+0.000000j 1 True 2 1 1.0 1.000000+0.000000j 1 True 3 1 1.0 1.000000+0.000000j 1 True 4 1 1.0 1.000000+0.000000j 1 True
>>> df.memory_usage() Index 128 int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64
>>> df.memory_usage(index=False) int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64
The memory footprint of object dtype columns is ignored by default:
>>> df.memory_usage(deep=True) Index 128 int64 40000 float64 40000 complex128 80000 object 160000 bool 5000 dtype: int64
Use a Categorical for efficient storage of an object-dtype column with many repeated values.
>>> df['object'].astype('category').memory_usage(deep=True) 5216
-
merge
(right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes='_x', '_y', copy=True, indicator=False, validate=None) → pandas.core.frame.DataFrame¶ Merge DataFrame or named Series objects with a database-style join.
The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on.
- rightDataFrame or named Series
Object to merge with.
- how{‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘inner’
Type of merge to be performed.
left: use only keys from left frame, similar to a SQL left outer join; preserve key order.
right: use only keys from right frame, similar to a SQL right outer join; preserve key order.
outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically.
inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys.
- onlabel or list
Column or index level names to join on. These must be found in both DataFrames. If on is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames.
- left_onlabel or list, or array-like
Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns.
- right_onlabel or list, or array-like
Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns.
- left_indexbool, default False
Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels.
- right_indexbool, default False
Use the index from the right DataFrame as the join key. Same caveats as left_index.
- sortbool, default False
Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword).
- suffixestuple of (str, str), default (‘_x’, ‘_y’)
Suffix to apply to overlapping column names in the left and right side, respectively. To raise an exception on overlapping columns use (False, False).
- copybool, default True
If False, avoid copy if possible.
- indicatorbool or str, default False
If True, adds a column to output DataFrame called “_merge” with information on the source of each row. If string, column with information on source of each row will be added to output DataFrame, and column will be named value of string. Information column is Categorical-type and takes on a value of “left_only” for observations whose merge key only appears in ‘left’ DataFrame, “right_only” for observations whose merge key only appears in ‘right’ DataFrame, and “both” if the observation’s merge key is found in both.
- validatestr, optional
If specified, checks if merge is of specified type.
“one_to_one” or “1:1”: check if merge keys are unique in both left and right datasets.
“one_to_many” or “1:m”: check if merge keys are unique in left dataset.
“many_to_one” or “m:1”: check if merge keys are unique in right dataset.
“many_to_many” or “m:m”: allowed, but does not result in checks.
New in version 0.21.0.
- DataFrame
A DataFrame of the two merged objects.
merge_ordered : Merge with optional filling/interpolation. merge_asof : Merge on nearest keys. DataFrame.join : Similar method using indices.
Support for specifying index levels as the on, left_on, and right_on parameters was added in version 0.23.0 Support for merging named Series objects was added in version 0.24.0
>>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}) >>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8
Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended.
>>> df1.merge(df2, left_on='lkey', right_on='rkey') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7
Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns.
>>> df1.merge(df2, left_on='lkey', right_on='rkey', ... suffixes=('_left', '_right')) lkey value_left rkey value_right 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7
Merge DataFrames df1 and df2, but raise an exception if the DataFrames have any overlapping columns.
>>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False)) Traceback (most recent call last): ... ValueError: columns overlap but no suffix specified: Index(['value'], dtype='object')
-
merge_datasets
(other)¶ This operation combines two dataframes into one new DataFrame. If the operation is combining two SpatialDataFrames, the geometry_type must match.
Argument
Description
other
Required SpatialDataFrame. Another SpatialDataFrame to combine.
- Returns
SpatialDataFrame
-
min
(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)¶ Return the minimum of the values for the requested axis.
If you want the index of the minimum, use
idxmin
. This is the equivalent of thenumpy.ndarray
methodargmin
.- axis{index (0), columns (1)}
Axis for the function to be applied on.
- skipnabool, default True
Exclude NA/null values when computing the result.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- numeric_onlybool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- **kwargs
Additional keyword arguments to be passed to the function.
Series or DataFrame (if level specified)
Series.sum : Return the sum. Series.min : Return the minimum. Series.max : Return the maximum. Series.idxmin : Return the index of the minimum. Series.idxmax : Return the index of the maximum. DataFrame.sum : Return the sum over the requested axis. DataFrame.min : Return the minimum over the requested axis. DataFrame.max : Return the maximum over the requested axis. DataFrame.idxmin : Return the index of the minimum over the requested axis. DataFrame.idxmax : Return the index of the maximum over the requested axis.
>>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64
>>> s.min() 0
Min using level names, as well as indices.
>>> s.min(level='blooded') blooded warm 2 cold 0 Name: legs, dtype: int64
>>> s.min(level=0) blooded warm 2 cold 0 Name: legs, dtype: int64
-
mod
(other, axis='columns', level=None, fill_value=None)¶ Get Modulo of dataframe and other, element-wise (binary operator mod).
Equivalent to
dataframe % other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rmod.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
mode
(axis=0, numeric_only=False, dropna=True) → pandas.core.frame.DataFrame¶ Get the mode(s) of each element along the selected axis.
The mode of a set of values is the value that appears most often. It can be multiple values.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis to iterate over while searching for the mode:
0 or ‘index’ : get mode of each column
1 or ‘columns’ : get mode of each row.
- numeric_onlybool, default False
If True, only apply to numeric columns.
- dropnabool, default True
Don’t consider counts of NaN/NaT.
New in version 0.24.0.
- DataFrame
The modes of each column or row.
Series.mode : Return the highest frequency value in a Series. Series.value_counts : Return the counts of values in a Series.
>>> df = pd.DataFrame([('bird', 2, 2), ... ('mammal', 4, np.nan), ... ('arthropod', 8, 0), ... ('bird', 2, np.nan)], ... index=('falcon', 'horse', 'spider', 'ostrich'), ... columns=('species', 'legs', 'wings')) >>> df species legs wings falcon bird 2 2.0 horse mammal 4 NaN spider arthropod 8 0.0 ostrich bird 2 NaN
By default, missing values are not considered, and the mode of wings are both 0 and 2. The second row of species and legs contains
NaN
, because they have only one mode, but the DataFrame has two rows.>>> df.mode() species legs wings 0 bird 2.0 0.0 1 NaN NaN 2.0
Setting
dropna=False
NaN
values are considered and they can be the mode (like for wings).>>> df.mode(dropna=False) species legs wings 0 bird 2 NaN
Setting
numeric_only=True
, only the mode of numeric columns is computed, and columns of other types are ignored.>>> df.mode(numeric_only=True) legs wings 0 2.0 0.0 1 NaN 2.0
To compute the mode over columns and not rows, use the axis parameter:
>>> df.mode(axis='columns', numeric_only=True) 0 1 falcon 2.0 NaN horse 4.0 NaN spider 0.0 8.0 ostrich 2.0 NaN
-
mul
(other, axis='columns', level=None, fill_value=None)¶ Get Multiplication of dataframe and other, element-wise (binary operator mul).
Equivalent to
dataframe * other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rmul.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
multiply
(other, axis='columns', level=None, fill_value=None)¶ Get Multiplication of dataframe and other, element-wise (binary operator mul).
Equivalent to
dataframe * other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rmul.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
property
ndim
¶ Return an int representing the number of axes / array dimensions.
Return 1 if Series. Otherwise return 2 if DataFrame.
ndarray.ndim : Number of array dimensions.
>>> s = pd.Series({'a': 1, 'b': 2, 'c': 3}) >>> s.ndim 1
>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.ndim 2
-
ne
(other, axis='columns', level=None)¶ Get Not equal to of dataframe and other, element-wise (binary operator ne).
Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.
Equivalent to ==, =!, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- DataFrame of bool
Result of the comparison.
DataFrame.eq : Compare DataFrames for equality elementwise. DataFrame.ne : Compare DataFrames for inequality elementwise. DataFrame.le : Compare DataFrames for less than inequality
or equality elementwise.
- DataFrame.ltCompare DataFrames for strictly less than
inequality elementwise.
- DataFrame.geCompare DataFrames for greater than inequality
or equality elementwise.
- DataFrame.gtCompare DataFrames for strictly greater than
inequality elementwise.
Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).
>>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300
Comparison with a scalar, using either the operator or method:
>>> df == 100 cost revenue A False True B False False C True False
>>> df.eq(100) cost revenue A False True B False False C True False
When other is a
Series
, the columns of a DataFrame are aligned with the index of other and broadcast:>>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False True
Use the method to control the broadcast axis:
>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True True
When comparing to an arbitrary sequence, the number of columns must match the number elements in other:
>>> df == [250, 100] cost revenue A True True B False False C False False
Use the method to control the axis:
>>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True False
Compare to a DataFrame of different shape.
>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150
>>> df.gt(other) cost revenue A False False B False False C False True D False False
Compare to a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225
>>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False
-
nlargest
(n, columns, keep='first') → pandas.core.frame.DataFrame¶ Return the first n rows ordered by columns in descending order.
Return the first n rows with the largest values in columns, in descending order. The columns that are not specified are returned as well, but not used for ordering.
This method is equivalent to
df.sort_values(columns, ascending=False).head(n)
, but more performant.- nint
Number of rows to return.
- columnslabel or list of labels
Column label(s) to order by.
- keep{‘first’, ‘last’, ‘all’}, default ‘first’
Where there are duplicate values:
first : prioritize the first occurrence(s)
last : prioritize the last occurrence(s)
all
do not drop any duplicates, even it meansselecting more than n items.
New in version 0.24.0.
- DataFrame
The first n rows ordered by the given columns in descending order.
- DataFrame.nsmallestReturn the first n rows ordered by columns in
ascending order.
DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first n rows without re-ordering.
This function cannot be used with all column types. For example, when specifying columns with object or category dtypes,
TypeError
is raised.>>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI
In the following example, we will use
nlargest
to select the three rows having the largest values in column “population”.>>> df.nlargest(3, 'population') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT
When using
keep='last'
, ties are resolved in reverse order:>>> df.nlargest(3, 'population', keep='last') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN
When using
keep='all'
, all duplicate items are maintained:>>> df.nlargest(3, 'population', keep='all') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN
To order by the largest values in column “population” and then “GDP”, we can specify multiple columns like in the next example.
>>> df.nlargest(3, ['population', 'GDP']) population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN
-
notna
() → pandas.core.frame.DataFrame¶ Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings
''
ornumpy.inf
are not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True
). NA values, such as None ornumpy.NaN
, get mapped to False values.- DataFrame
Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.
DataFrame.notnull : Alias of notna. DataFrame.isna : Boolean inverse of notna. DataFrame.dropna : Omit axes labels with missing values. notna : Top-level notna.
Show which entries in a DataFrame are not NA.
>>> df = pd.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker
>>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True
Show which entries in a Series are not NA.
>>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64
>>> ser.notna() 0 True 1 True 2 False dtype: bool
-
notnull
() → pandas.core.frame.DataFrame¶ Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings
''
ornumpy.inf
are not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True
). NA values, such as None ornumpy.NaN
, get mapped to False values.- DataFrame
Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.
DataFrame.notnull : Alias of notna. DataFrame.isna : Boolean inverse of notna. DataFrame.dropna : Omit axes labels with missing values. notna : Top-level notna.
Show which entries in a DataFrame are not NA.
>>> df = pd.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker
>>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True
Show which entries in a Series are not NA.
>>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64
>>> ser.notna() 0 True 1 True 2 False dtype: bool
-
nsmallest
(n, columns, keep='first') → pandas.core.frame.DataFrame¶ Return the first n rows ordered by columns in ascending order.
Return the first n rows with the smallest values in columns, in ascending order. The columns that are not specified are returned as well, but not used for ordering.
This method is equivalent to
df.sort_values(columns, ascending=True).head(n)
, but more performant.- nint
Number of items to retrieve.
- columnslist or str
Column name or names to order by.
- keep{‘first’, ‘last’, ‘all’}, default ‘first’
Where there are duplicate values:
first
: take the first occurrence.last
: take the last occurrence.all
: do not drop any duplicates, even it means selecting more than n items.
New in version 0.24.0.
DataFrame
- DataFrame.nlargestReturn the first n rows ordered by columns in
descending order.
DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first n rows without re-ordering.
>>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI
In the following example, we will use
nsmallest
to select the three rows having the smallest values in column “a”.>>> df.nsmallest(3, 'population') population GDP alpha-2 Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI
When using
keep='last'
, ties are resolved in reverse order:>>> df.nsmallest(3, 'population', keep='last') population GDP alpha-2 Anguilla 11300 311 AI Tuvalu 11300 38 TV Nauru 11300 182 NR
When using
keep='all'
, all duplicate items are maintained:>>> df.nsmallest(3, 'population', keep='all') population GDP alpha-2 Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI
To order by the largest values in column “a” and then “c”, we can specify multiple columns like in the next example.
>>> df.nsmallest(3, ['population', 'GDP']) population GDP alpha-2 Tuvalu 11300 38 TV Nauru 11300 182 NR Anguilla 11300 311 AI
-
nunique
(axis=0, dropna=True) → pandas.core.series.Series¶ Count distinct observations over requested axis.
Return Series with number of distinct observations. Can ignore NaN values.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis to use. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.
- dropnabool, default True
Don’t include NaN in the counts.
Series
Series.nunique: Method nunique for Series. DataFrame.count: Count non-NA cells for each column or row.
>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]}) >>> df.nunique() A 3 B 1 dtype: int64
>>> df.nunique(axis=1) 0 1 1 2 2 2 dtype: int64
-
overlaps
(second_geometry)¶ Indicates if the intersection of the two geometries has the same shape type as one of the input geometries and is not equivalent to either of the input geometries.
- Paramters:
- second_geometry
a second geometry
-
property
part_count
¶ The number of geometry parts for the feature.
-
pct_change
(periods=1, fill_method='pad', limit=None, freq=None, **kwargs) → FrameOrSeries¶ Percentage change between the current and a prior element.
Computes the percentage change from the immediately previous row by default. This is useful in comparing the percentage of change in a time series of elements.
- periodsint, default 1
Periods to shift for forming percent change.
- fill_methodstr, default ‘pad’
How to handle NAs before computing percent changes.
- limitint, default None
The number of consecutive NAs to fill before stopping.
- freqDateOffset, timedelta, or str, optional
Increment to use from time series API (e.g. ‘M’ or BDay()).
- **kwargs
Additional keyword arguments are passed into DataFrame.shift or Series.shift.
- chgSeries or DataFrame
The same type as the calling object.
Series.diff : Compute the difference of two elements in a Series. DataFrame.diff : Compute the difference of two elements in a DataFrame. Series.shift : Shift the index by some number of periods. DataFrame.shift : Shift the index by some number of periods.
Series
>>> s = pd.Series([90, 91, 85]) >>> s 0 90 1 91 2 85 dtype: int64
>>> s.pct_change() 0 NaN 1 0.011111 2 -0.065934 dtype: float64
>>> s.pct_change(periods=2) 0 NaN 1 NaN 2 -0.055556 dtype: float64
See the percentage change in a Series where filling NAs with last valid observation forward to next valid.
>>> s = pd.Series([90, 91, None, 85]) >>> s 0 90.0 1 91.0 2 NaN 3 85.0 dtype: float64
>>> s.pct_change(fill_method='ffill') 0 NaN 1 0.011111 2 0.000000 3 -0.065934 dtype: float64
DataFrame
Percentage change in French franc, Deutsche Mark, and Italian lira from 1980-01-01 to 1980-03-01.
>>> df = pd.DataFrame({ ... 'FR': [4.0405, 4.0963, 4.3149], ... 'GR': [1.7246, 1.7482, 1.8519], ... 'IT': [804.74, 810.01, 860.13]}, ... index=['1980-01-01', '1980-02-01', '1980-03-01']) >>> df FR GR IT 1980-01-01 4.0405 1.7246 804.74 1980-02-01 4.0963 1.7482 810.01 1980-03-01 4.3149 1.8519 860.13
>>> df.pct_change() FR GR IT 1980-01-01 NaN NaN NaN 1980-02-01 0.013810 0.013684 0.006549 1980-03-01 0.053365 0.059318 0.061876
Percentage of change in GOOG and APPL stock volume. Shows computing the percentage change between columns.
>>> df = pd.DataFrame({ ... '2016': [1769950, 30586265], ... '2015': [1500923, 40912316], ... '2014': [1371819, 41403351]}, ... index=['GOOG', 'APPL']) >>> df 2016 2015 2014 GOOG 1769950 1500923 1371819 APPL 30586265 40912316 41403351
>>> df.pct_change(axis='columns') 2016 2015 2014 GOOG NaN -0.151997 -0.086016 APPL NaN 0.337604 0.012002
-
pipe
(func, *args, **kwargs)¶ Apply func(self, *args, **kwargs).
- funcfunction
Function to apply to the Series/DataFrame.
args
, andkwargs
are passed intofunc
. Alternatively a(callable, data_keyword)
tuple wheredata_keyword
is a string indicating the keyword ofcallable
that expects the Series/DataFrame.- argsiterable, optional
Positional arguments passed into
func
.- kwargsmapping, optional
A dictionary of keyword arguments passed into
func
.
object : the return type of
func
.DataFrame.apply DataFrame.applymap Series.map
Use
.pipe
when chaining together functions that expect Series, DataFrames or GroupBy objects. Instead of writing>>> f(g(h(df), arg1=a), arg2=b, arg3=c)
You can write
>>> (df.pipe(h) ... .pipe(g, arg1=a) ... .pipe(f, arg2=b, arg3=c) ... )
If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose
f
takes its data asarg2
:>>> (df.pipe(h) ... .pipe(g, arg1=a) ... .pipe((f, 'arg2'), arg1=a, arg3=c) ... )
-
pivot
(index=None, columns=None, values=None) → pandas.core.frame.DataFrame¶ Return reshaped DataFrame organized by given index / column values.
Reshape data (produce a “pivot” table) based on column values. Uses unique values from specified index / columns to form axes of the resulting DataFrame. This function does not support data aggregation, multiple values will result in a MultiIndex in the columns. See the User Guide for more on reshaping.
- indexstr or object, optional
Column to use to make new frame’s index. If None, uses existing index.
- columnsstr or object
Column to use to make new frame’s columns.
- valuesstr, object or a list of the previous, optional
Column(s) to use for populating new frame’s values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns.
Changed in version 0.23.0: Also accept list of column names.
- DataFrame
Returns reshaped DataFrame.
- ValueError:
When there are any index, columns combinations with multiple values. DataFrame.pivot_table when you need to aggregate.
- DataFrame.pivot_tableGeneralization of pivot that can handle
duplicate values for one index/column pair.
- DataFrame.unstackPivot based on the index values instead of a
column.
For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods.
>>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', ... 'two'], ... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], ... 'baz': [1, 2, 3, 4, 5, 6], ... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) >>> df foo bar baz zoo 0 one A 1 x 1 one B 2 y 2 one C 3 z 3 two A 4 q 4 two B 5 w 5 two C 6 t
>>> df.pivot(index='foo', columns='bar', values='baz') bar A B C foo one 1 2 3 two 4 5 6
>>> df.pivot(index='foo', columns='bar')['baz'] bar A B C foo one 1 2 3 two 4 5 6
>>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo']) baz zoo bar A B C A B C foo one 1 2 3 x y z two 4 5 6 q w t
A ValueError is raised if there are any duplicates.
>>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'], ... "bar": ['A', 'A', 'B', 'C'], ... "baz": [1, 2, 3, 4]}) >>> df foo bar baz 0 one A 1 1 one A 2 2 two B 3 3 two C 4
Notice that the first two rows are the same for our index and columns arguments.
>>> df.pivot(index='foo', columns='bar', values='baz') Traceback (most recent call last): ... ValueError: Index contains duplicate entries, cannot reshape
-
pivot_table
(values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False) → pandas.core.frame.DataFrame¶ Create a spreadsheet-style pivot table as a DataFrame.
The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame.
values : column to aggregate, optional index : column, Grouper, array, or list of the previous
If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.
- columnscolumn, Grouper, array, or list of the previous
If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.
- aggfuncfunction, list of functions, dict, default numpy.mean
If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) If dict is passed, the key is column to aggregate and value is function or list of functions.
- fill_valuescalar, default None
Value to replace missing values with.
- marginsbool, default False
Add all row / columns (e.g. for subtotal / grand totals).
- dropnabool, default True
Do not include columns whose entries are all NaN.
- margins_namestr, default ‘All’
Name of the row / column that will contain the totals when margins is True.
- observedbool, default False
This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers.
Changed in version 0.25.0.
- DataFrame
An Excel style pivot table.
- DataFrame.pivotPivot without aggregation that can handle
non-numeric data.
>>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", ... "bar", "bar", "bar", "bar"], ... "B": ["one", "one", "one", "two", "two", ... "one", "one", "two", "two"], ... "C": ["small", "large", "large", "small", ... "small", "large", "small", "small", ... "large"], ... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], ... "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]}) >>> df A B C D E 0 foo one small 1 2 1 foo one large 2 4 2 foo one large 2 5 3 foo two small 3 5 4 foo two small 3 6 5 bar one large 4 6 6 bar one small 5 8 7 bar two small 6 9 8 bar two large 7 9
This first example aggregates values by taking the sum.
>>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum) >>> table C large small A B bar one 4.0 5.0 two 7.0 6.0 foo one 4.0 1.0 two NaN 6.0
We can also fill missing values using the fill_value parameter.
>>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum, fill_value=0) >>> table C large small A B bar one 4 5 two 7 6 foo one 4 1 two 0 6
The next example aggregates by taking the mean across multiple columns.
>>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': np.mean}) >>> table D E A C bar large 5.500000 7.500000 small 5.500000 8.500000 foo large 2.000000 4.500000 small 2.333333 4.333333
We can also calculate multiple types of aggregations for any given value column.
>>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': [min, max, np.mean]}) >>> table D E mean max mean min A C bar large 5.500000 9.0 7.500000 6.0 small 5.500000 9.0 8.500000 8.0 foo large 2.000000 5.0 4.500000 4.0 small 2.333333 6.0 4.333333 2.0
-
plot
(*args, **kwargs)¶ Plot draws the data on a web map. The user can describe in simple terms how to renderer spatial data using symbol. To make the process simpler a palette for which colors are drawn from can be used instead of explicit colors.
Explicit Argument
Description
df
required SpatialDataFrame or GeoSeries. This is the data to map.
map_widget
optional WebMap object. This is the map to display the data on.
palette
optional string/dict. Color mapping. For simple renderer, just provide a string. For more robust renderers like unique renderer, a dictionary can be given.
renderer_type
optional string. Determines the type of renderer to use for the provided dataset. The default is ‘s’ which is for simple renderers.
Allowed values:
‘s’ - is a simple renderer that uses one symbol only.
- ‘u’ - unique renderer symbolizes features based on one
or more matching string attributes.
- ‘c’ - A class breaks renderer symbolizes based on the
value of some numeric attribute.
- ‘h’ - heatmap renders point data into a raster
visualization that emphasizes areas of higher density or weighted values.
symbol_style
optional string. This is the type of symbol the user needs to create. Valid inputs are: simple, picture, text, or carto. The default is simple.
symbol_type
optional string. This is the symbology used by the geometry. For example ‘s’ for a Line geometry is a solid line. And ‘-‘ is a dash line.
Allowed symbol types based on geometries:
Point Symbols
‘o’ - Circle (default)
‘+’ - Cross
‘D’ - Diamond
‘s’ - Square
‘x’ - X
Polyline Symbols
‘s’ - Solid (default)
‘-‘ - Dash
‘-.’ - Dash Dot
‘-..’ - Dash Dot Dot
‘.’ - Dot
‘–’ - Long Dash
‘–.’ - Long Dash Dot
‘n’ - Null
‘s-‘ - Short Dash
‘s-.’ - Short Dash Dot
‘s-..’ - Short Dash Dot Dot
‘s.’ - Short Dot
Polygon Symbols
‘s’ - Solid Fill (default)
‘’ - Backward Diagonal
‘/’ - Forward Diagonal
‘|’ - Vertical Bar
‘-‘ - Horizontal Bar
‘x’ - Diagonal Cross
‘+’ - Cross
col
optional string/list. Field or fields used for heatmap, class breaks, or unique renderers.
palette
optional string. The color map to draw from in order to visualize the data. The default palette is ‘jet’. To get a visual representation of the allowed color maps, use the display_colormaps method.
alpha
optional float. This is a value between 0 and 1 with 1 being the default value. The alpha sets the transparancy of the renderer when applicable.
Render Syntax
The render syntax allows for users to fully customize symbolizing the data.
Simple Renderer
A simple renderer is a renderer that uses one symbol only.
Optional Argument
Description
symbol_style
optional string. This is the type of symbol the user needs to create. Valid inputs are: simple, picture, text, or carto. The default is simple.
symbol_type
optional string. This is the symbology used by the geometry. For example ‘s’ for a Line geometry is a solid line. And ‘-‘ is a dash line.
Point Symbols
‘o’ - Circle (default)
‘+’ - Cross
‘D’ - Diamond
‘s’ - Square
‘x’ - X
Polyline Symbols
‘s’ - Solid (default)
‘-‘ - Dash
‘-.’ - Dash Dot
‘-..’ - Dash Dot Dot
‘.’ - Dot
‘–’ - Long Dash
‘–.’ - Long Dash Dot
‘n’ - Null
‘s-‘ - Short Dash
‘s-.’ - Short Dash Dot
‘s-..’ - Short Dash Dot Dot
‘s.’ - Short Dot
Polygon Symbols
‘s’ - Solid Fill (default)
‘’ - Backward Diagonal
‘/’ - Forward Diagonal
‘|’ - Vertical Bar
‘-‘ - Horizontal Bar
‘x’ - Diagonal Cross
‘+’ - Cross
description
Description of the renderer.
rotation_expression
A constant value or an expression that derives the angle of rotation based on a feature attribute value. When an attribute name is specified, it’s enclosed in square brackets.
rotation_type
String value which controls the origin and direction of rotation on point features. If the rotationType is defined as arithmetic, the symbol is rotated from East in a counter-clockwise direction where East is the 0 degree axis. If the rotationType is defined as geographic, the symbol is rotated from North in a clockwise direction where North is the 0 degree axis.
Must be one of the following values:
arithmetic
geographic
visual_variables
An array of objects used to set rendering properties.
Heatmap Renderer
The HeatmapRenderer renders point data into a raster visualization that emphasizes areas of higher density or weighted values.
Optional Argument
Description
blur_radius
The radius (in pixels) of the circle over which the majority of each point’s value is spread.
field
This is optional as this renderer can be created if no field is specified. Each feature gets the same value/importance/weight or with a field where each feature is weighted by the field’s value.
max_intensity
The pixel intensity value which is assigned the final color in the color ramp.
min_intensity
The pixel intensity value which is assigned the initial color in the color ramp.
ratio
A number between 0-1. Describes what portion along the gradient the colorStop is added.
Unique Renderer
This renderer symbolizes features based on one or more matching string attributes.
Optional Argument
Description
background_fill_symbol
A symbol used for polygon features as a background if the renderer uses point symbols, e.g. for bivariate types & size rendering. Only applicable to polygon layers. PictureFillSymbols can also be used outside of the Map Viewer for Size and Predominance and Size renderers.
default_label
Default label for the default symbol used to draw unspecified values.
default_symbol
Symbol used when a value cannot be matched.
col
String or List of Strings. Attribute field(s) the renderer uses to match values.
field_delimiter
String inserted between the values if multiple attribute fields are specified.
rotation_expression
A constant value or an expression that derives the angle of rotation based on a feature attribute value. When an attribute name is specified, it’s enclosed in square brackets. Rotation is set using a visual variable of type rotation info with a specified field or value expression property.
rotation_type
String property which controls the origin and direction of rotation. If the rotation type is defined as arithmetic the symbol is rotated from East in a counter-clockwise direction where East is the 0 degree axis. If the rotation type is defined as geographic, the symbol is rotated from North in a clockwise direction where North is the 0 degree axis. Must be one of the following values:
arithmetic
geographic
arcade_expression
An Arcade expression evaluating to either a string or a number.
arcade_title
The title identifying and describing the associated Arcade expression as defined in the valueExpression property.
visual_variables
An array of objects used to set rendering properties.
Class Breaks Renderer
A class breaks renderer symbolizes based on the value of some numeric attribute.
Optional Argument
Description
background_fill_symbol
A symbol used for polygon features as a background if the renderer uses point symbols, e.g. for bivariate types & size rendering. Only applicable to polygon layers. PictureFillSymbols can also be used outside of the Map Viewer for Size and Predominance and Size renderers.
default_label
Default label for the default symbol used to draw unspecified values.
default_symbol
Symbol used when a value cannot be matched.
method
Determines the classification method that was used to generate class breaks.
Must be one of the following values:
esriClassifyDefinedInterval
esriClassifyEqualInterval
esriClassifyGeometricalInterval
esriClassifyNaturalBreaks
esriClassifyQuantile
esriClassifyStandardDeviation
esriClassifyManual
field
Attribute field used for renderer.
min_value
The minimum numeric data value needed to begin class breaks.
normalization_field
Used when normalizationType is field. The string value indicating the attribute field by which the data value is normalized.
normalization_total
Used when normalizationType is percent-of-total, this number property contains the total of all data values.
normalization_type
Determine how the data was normalized.
Must be one of the following values:
esriNormalizeByField
esriNormalizeByLog
esriNormalizeByPercentOfTotal
rotation_expression
A constant value or an expression that derives the angle of rotation based on a feature attribute value. When an attribute name is specified, it’s enclosed in square brackets.
rotation_type
A string property which controls the origin and direction of rotation. If the rotation_type is defined as arithmetic, the symbol is rotated from East in a couter-clockwise direction where East is the 0 degree axis. If the rotationType is defined as geographic, the symbol is rotated from North in a clockwise direction where North is the 0 degree axis.
Must be one of the following values:
arithmetic
geographic
arcade_expression
An Arcade expression evaluating to a number.
arcade_title
The title identifying and describing the associated Arcade expression as defined in the arcade_expression property.
visual_variables
An object used to set rendering options.
Symbol Syntax
Optional Argument
Description
symbol_style
optional string. This is the type of symbol the user needs to create. Valid inputs are: simple, picture, text, or carto. The default is simple.
symbol_type
optional string. This is the symbology used by the geometry. For example ‘s’ for a Line geometry is a solid line. And ‘-‘ is a dash line.
Point Symbols
‘o’ - Circle (default)
‘+’ - Cross
‘D’ - Diamond
‘s’ - Square
‘x’ - X
Polyline Symbols
‘s’ - Solid (default)
‘-‘ - Dash
‘-.’ - Dash Dot
‘-..’ - Dash Dot Dot
‘.’ - Dot
‘–’ - Long Dash
‘–.’ - Long Dash Dot
‘n’ - Null
‘s-‘ - Short Dash
‘s-.’ - Short Dash Dot
‘s-..’ - Short Dash Dot Dot
‘s.’ - Short Dot
Polygon Symbols
‘s’ - Solid Fill (default)
‘’ - Backward Diagonal
‘/’ - Forward Diagonal
‘|’ - Vertical Bar
‘-‘ - Horizontal Bar
‘x’ - Diagonal Cross
‘+’ - Cross
cmap
optional string or list. This is the color scheme a user can provide if the exact color is not needed, or a user can provide a list with the color defined as: [red, green blue, alpha]. The values red, green, blue are from 0-255 and alpha is a float value from 0 - 1. The default value is ‘jet’ color scheme.
cstep
optional integer. If provided, its the color location on the color scheme.
Simple Symbols
This is a list of optional parameters that can be given for point, line or polygon geometries.
Argument
Description
marker_size
optional float. Numeric size of the symbol given in points.
marker_angle
optional float. Numeric value used to rotate the symbol. The symbol is rotated counter-clockwise. For example, The following, angle=-30, in will create a symbol rotated -30 degrees counter-clockwise; that is, 30 degrees clockwise.
marker_xoffset
Numeric value indicating the offset on the x-axis in points.
marker_yoffset
Numeric value indicating the offset on the y-axis in points.
line_width
optional float. Numeric value indicating the width of the line in points
outline_style
Optional string. For polygon point, and line geometries , a customized outline type can be provided.
Allowed Styles:
‘s’ - Solid (default)
‘-‘ - Dash
‘-.’ - Dash Dot
‘-..’ - Dash Dot Dot
‘.’ - Dot
‘–’ - Long Dash
‘–.’ - Long Dash Dot
‘n’ - Null
‘s-‘ - Short Dash
‘s-.’ - Short Dash Dot
‘s-..’ - Short Dash Dot Dot
‘s.’ - Short Dot
outline_color
optional string or list. This is the same color as the cmap property, but specifically applies to the outline_color.
Picture Symbol
This type of symbol only applies to Points, MultiPoints and Polygons.
Argument
Description
marker_angle
Numeric value that defines the number of degrees ranging from 0-360, that a marker symbol is rotated. The rotation is from East in a counter-clockwise direction where East is the 0 axis.
marker_xoffset
Numeric value indicating the offset on the x-axis in points.
marker_yoffset
Numeric value indicating the offset on the y-axis in points.
height
Numeric value used if needing to resize the symbol. Specify a value in points. If images are to be displayed in their original size, leave this blank.
width
Numeric value used if needing to resize the symbol. Specify a value in points. If images are to be displayed in their original size, leave this blank.
url
String value indicating the URL of the image. The URL should be relative if working with static layers. A full URL should be used for map service dynamic layers. A relative URL can be dereferenced by accessing the map layer image resource or the feature layer image resource.
image_data
String value indicating the base64 encoded data.
xscale
Numeric value indicating the scale factor in x direction.
yscale
Numeric value indicating the scale factor in y direction.
outline_color
optional string or list. This is the same color as the cmap property, but specifically applies to the outline_color.
outline_style
Optional string. For polygon point, and line geometries , a customized outline type can be provided.
Allowed Styles:
‘s’ - Solid (default)
‘-‘ - Dash
‘-.’ - Dash Dot
‘-..’ - Dash Dot Dot
‘.’ - Dot
‘–’ - Long Dash
‘–.’ - Long Dash Dot
‘n’ - Null
‘s-‘ - Short Dash
‘s-.’ - Short Dash Dot
‘s-..’ - Short Dash Dot Dot
‘s.’ - Short Dot
outline_color
optional string or list. This is the same color as the cmap property, but specifically applies to the outline_color.
line_width
optional float. Numeric value indicating the width of the line in points
Text Symbol
This type of symbol only applies to Points, MultiPoints and Polygons.
Argument
Description
font_decoration
The text decoration. Must be one of the following values: - line-through - underline - none
font_family
Optional string. The font family.
font_size
Optional float. The font size in points.
font_style
Optional string. The text style. - italic - normal - oblique
font_weight
Optional string. The text weight. Must be one of the following values: - bold - bolder - lighter - normal
background_color
optional string/list. Background color is represented as a four-element array or string of a color map.
halo_color
Optional string/list. Color of the halo around the text. The default is None.
halo_size
Optional integer/float. The point size of a halo around the text symbol.
horizontal_alignment
optional string. One of the following string values representing the horizontal alignment of the text. Must be one of the following values: - left - right - center - justify
kerning
optional boolean. Boolean value indicating whether to adjust the spacing between characters in the text string.
line_color
optional string/list. Outline color is represented as a four-element array or string of a color map.
line_width
optional integer/float. Outline size.
marker_angle
optional int. A numeric value that defines the number of degrees (0 to 360) that a text symbol is rotated. The rotation is from East in a counter-clockwise direction where East is the 0 axis.
marker_xoffset
optional int/float.Numeric value indicating the offset on the x-axis in points.
marker_yoffset
optional int/float.Numeric value indicating the offset on the x-axis in points.
right_to_left
optional boolean. Set to true if using Hebrew or Arabic fonts.
rotated
optional boolean. Boolean value indicating whether every character in the text string is rotated.
text
Required string. Text Value to display next to geometry.
vertical_alignment
Optional string. One of the following string values representing the vertical alignment of the text. Must be one of the following values: - top - bottom - middle - baseline
Cartographic Symbol
This type of symbol only applies to line geometries.
Argument
Description
line_width
optional float. Numeric value indicating the width of the line in points
cap
Optional string. The cap style.
join
Optional string. The join style.
miter_limit
Optional string. Size threshold for showing mitered line joins.
The kwargs parameter accepts all parameters of the create_symbol method and the create_renderer method.
-
property
point_count
¶ The total number of points for the feature.
-
point_from_angle_and_distance
(angle, distance, method='GEODESCIC')¶ Returns a point at a given angle and distance in degrees and meters using the specified measurement type.
- Parameters:
- angle
The angle in degrees to the returned point.
- distance
The distance in meters to the returned point.
- method
PLANAR measurements reflect the projection of geographic
data onto the 2D surface (in other words, they will not take into account the curvature of the earth). GEODESIC, GREAT_ELLIPTIC, LOXODROME, and PRESERVE_SHAPE measurement types may be chosen as an alternative, if desired.
-
pop
(item) → FrameOrSeries¶ Return item and drop from frame. Raise KeyError if not found.
- itemstr
Label of column to be popped.
Series
>>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey', 'mammal', np.nan)], ... columns=('name', 'class', 'max_speed')) >>> df name class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN
>>> df.pop('class') 0 bird 1 bird 2 mammal 3 mammal Name: class, dtype: object
>>> df name max_speed 0 falcon 389.0 1 parrot 24.0 2 lion 80.5 3 monkey NaN
-
position_along_line
(value, use_percentage=False)¶ Returns a point on a line at a specified distance from the beginning of the line.
- Parameters:
- value
The distance along the line.
- use_percentage
The distance may be specified as a fixed unit
of measure or a ratio of the length of the line. If True, value is used as a percentage; if False, value is used as a distance. For percentages, the value should be expressed as a double from 0.0 (0%) to 1.0 (100%).
-
pow
(other, axis='columns', level=None, fill_value=None)¶ Get Exponential power of dataframe and other, element-wise (binary operator pow).
Equivalent to
dataframe ** other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rpow.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
prod
(axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs)¶ Return the product of the values for the requested axis.
- axis{index (0), columns (1)}
Axis for the function to be applied on.
- skipnabool, default True
Exclude NA/null values when computing the result.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- numeric_onlybool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- min_countint, default 0
The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA.New in version 0.22.0: Added with the default being 0. This means the sum of an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.
- **kwargs
Additional keyword arguments to be passed to the function.
Series or DataFrame (if level specified)
By default, the product of an empty or all-NA Series is
1
>>> pd.Series([]).prod() 1.0
This can be controlled with the
min_count
parameter>>> pd.Series([]).prod(min_count=1) nan
Thanks to the
skipna
parameter,min_count
handles all-NA and empty series identically.>>> pd.Series([np.nan]).prod() 1.0
>>> pd.Series([np.nan]).prod(min_count=1) nan
-
product
(axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs)¶ Return the product of the values for the requested axis.
- axis{index (0), columns (1)}
Axis for the function to be applied on.
- skipnabool, default True
Exclude NA/null values when computing the result.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- numeric_onlybool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- min_countint, default 0
The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA.New in version 0.22.0: Added with the default being 0. This means the sum of an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.
- **kwargs
Additional keyword arguments to be passed to the function.
Series or DataFrame (if level specified)
By default, the product of an empty or all-NA Series is
1
>>> pd.Series([]).prod() 1.0
This can be controlled with the
min_count
parameter>>> pd.Series([]).prod(min_count=1) nan
Thanks to the
skipna
parameter,min_count
handles all-NA and empty series identically.>>> pd.Series([np.nan]).prod() 1.0
>>> pd.Series([np.nan]).prod(min_count=1) nan
-
project_as
(spatial_reference, transformation_name=None)¶ Projects a geometry and optionally applies a geotransformation.
- Parameter:
- spatial_reference
The new spatial reference. This can be a
SpatialReference object or the coordinate system name.
- transformation_name
The geotransformation name.
-
quantile
(q=0.5, axis=0, numeric_only=True, interpolation='linear')¶ Return values at the given quantile over requested axis.
- qfloat or array-like, default 0.5 (50% quantile)
Value between 0 <= q <= 1, the quantile(s) to compute.
- axis{0, 1, ‘index’, ‘columns’} (default 0)
Equals 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.
- numeric_onlybool, default True
If False, the quantile of datetime and timedelta data will be computed as well.
- interpolation{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}
This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j:
linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j.
lower: i.
higher: j.
nearest: i or j whichever is nearest.
midpoint: (i + j) / 2.
Series or DataFrame
- If
q
is an array, a DataFrame will be returned where the index is
q
, the columns are the columns of self, and the values are the quantiles.- If
q
is a float, a Series will be returned where the index is the columns of self and the values are the quantiles.
core.window.Rolling.quantile: Rolling quantile. numpy.percentile: Numpy function to compute the percentile.
>>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0
Specifying numeric_only=False will also compute the quantile of datetime and timedelta data.
>>> df = pd.DataFrame({'A': [1, 2], ... 'B': [pd.Timestamp('2010'), ... pd.Timestamp('2011')], ... 'C': [pd.Timedelta('1 days'), ... pd.Timedelta('2 days')]}) >>> df.quantile(0.5, numeric_only=False) A 1.5 B 2010-07-02 12:00:00 C 1 days 12:00:00 Name: 0.5, dtype: object
-
query
(expr, inplace=False, **kwargs)¶ Query the columns of a DataFrame with a boolean expression.
- exprstr
The query string to evaluate.
You can refer to variables in the environment by prefixing them with an ‘@’ character like
@a + b
.You can refer to column names that contain spaces or operators by surrounding them in backticks. This way you can also escape names that start with a digit, or those that are a Python keyword. Basically when it is not valid Python identifier. See notes down for more details.
For example, if one of your columns is called
a a
and you want to sum it withb
, your query should be`a a` + b
.New in version 0.25.0: Backtick quoting introduced.
New in version 1.0.0: Expanding functionality of backtick quoting for more than only spaces.
- inplacebool
Whether the query should modify the data in place or return a modified copy.
- **kwargs
See the documentation for
eval()
for complete details on the keyword arguments accepted byDataFrame.query()
.
- DataFrame
DataFrame resulting from the provided query expression.
- evalEvaluate a string describing operations on
DataFrame columns.
- DataFrame.evalEvaluate a string describing operations on
DataFrame columns.
The result of the evaluation of this expression is first passed to
DataFrame.loc
and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed toDataFrame.__getitem__()
.This method uses the top-level
eval()
function to evaluate the passed query.The
query()
method uses a slightly modified Python syntax by default. For example, the&
and|
(bitwise) operators have the precedence of their boolean cousins,and
andor
. This is syntactically valid Python, however the semantics are different.You can change the semantics of the expression by passing the keyword argument
parser='python'
. This enforces the same semantics as evaluation in Python space. Likewise, you can passengine='python'
to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to usingnumexpr
as the engine.The
DataFrame.index
andDataFrame.columns
attributes of theDataFrame
instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifierindex
is used for the frame index; you can also use the name of the index to identify it in a query. Please note that Python keywords may not be used as identifiers.For further details and examples see the
query
documentation in indexing.Backtick quoted variables
Backtick quoted variables are parsed as literal Python code and are converted internally to a Python valid identifier. This can lead to the following problems.
During parsing a number of disallowed characters inside the backtick quoted string are replaced by strings that are allowed as a Python identifier. These characters include all operators in Python, the space character, the question mark, the exclamation mark, the dollar sign, and the euro sign. For other characters that fall outside the ASCII range (U+0001..U+007F) and those that are not further specified in PEP 3131, the query parser will raise an error. This excludes whitespace different than the space character, but also the hashtag (as it is used for comments) and the backtick itself (backtick can also not be escaped).
In a special case, quotes that make a pair around a backtick can confuse the parser. For example,
`it's` > `that's`
will raise an error, as it forms a quoted string ('s > `that'
) with a backtick inside.See also the Python documentation about lexical analysis (https://docs.python.org/3/reference/lexical_analysis.html) in combination with the source code in
pandas.core.computation.parsing
.>>> df = pd.DataFrame({'A': range(1, 6), ... 'B': range(10, 0, -2), ... 'C C': range(10, 5, -1)}) >>> df A B C C 0 1 10 10 1 2 8 9 2 3 6 8 3 4 4 7 4 5 2 6 >>> df.query('A > B') A B C C 4 5 2 6
The previous expression is equivalent to
>>> df[df.A > df.B] A B C C 4 5 2 6
For columns with spaces in their name, you can use backtick quoting.
>>> df.query('B == `C C`') A B C C 0 1 10 10
The previous expression is equivalent to
>>> df[df.B == df['C C']] A B C C 0 1 10 10
-
query_point_and_distance
(second_geometry, use_percentage=False)¶ Finds the point on the polyline nearest to the in_point and the distance between those points. Also returns information about the side of the line the in_point is on as well as the distance along the line where the nearest point occurs.
- Paramters:
- second_geometry
a second geometry
- as_percentage
if False, the measure will be returned as
distance, True, measure will be a percentage
-
radd
(other, axis='columns', level=None, fill_value=None)¶ Get Addition of dataframe and other, element-wise (binary operator radd).
Equivalent to
other + dataframe
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, add.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
rank
(axis=0, method: str = 'average', numeric_only: Optional[bool] = None, na_option: str = 'keep', ascending: bool = True, pct: bool = False) → FrameOrSeries¶ Compute numerical data ranks (1 through n) along axis.
By default, equal values are assigned a rank that is the average of the ranks of those values.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
Index to direct ranking.
- method{‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}, default ‘average’
How to rank the group of records that have the same value (i.e. ties):
average: average rank of the group
min: lowest rank in the group
max: highest rank in the group
first: ranks assigned in order they appear in the array
dense: like ‘min’, but rank always increases by 1 between groups.
- numeric_onlybool, optional
For DataFrame objects, rank only numeric columns if set to True.
- na_option{‘keep’, ‘top’, ‘bottom’}, default ‘keep’
How to rank NaN values:
keep: assign NaN rank to NaN values
top: assign smallest rank to NaN values if ascending
bottom: assign highest rank to NaN values if ascending.
- ascendingbool, default True
Whether or not the elements should be ranked in ascending order.
- pctbool, default False
Whether or not to display the returned rankings in percentile form.
- same type as caller
Return a Series or DataFrame with data ranks as values.
core.groupby.GroupBy.rank : Rank of values within each group.
>>> df = pd.DataFrame(data={'Animal': ['cat', 'penguin', 'dog', ... 'spider', 'snake'], ... 'Number_legs': [4, 2, 4, 8, np.nan]}) >>> df Animal Number_legs 0 cat 4.0 1 penguin 2.0 2 dog 4.0 3 spider 8.0 4 snake NaN
The following example shows how the method behaves with the above parameters:
default_rank: this is the default behaviour obtained without using any parameter.
max_rank: setting
method = 'max'
the records that have the same values are ranked using the highest rank (e.g.: since ‘cat’ and ‘dog’ are both in the 2nd and 3rd position, rank 3 is assigned.)NA_bottom: choosing
na_option = 'bottom'
, if there are records with NaN values they are placed at the bottom of the ranking.pct_rank: when setting
pct = True
, the ranking is expressed as percentile rank.
>>> df['default_rank'] = df['Number_legs'].rank() >>> df['max_rank'] = df['Number_legs'].rank(method='max') >>> df['NA_bottom'] = df['Number_legs'].rank(na_option='bottom') >>> df['pct_rank'] = df['Number_legs'].rank(pct=True) >>> df Animal Number_legs default_rank max_rank NA_bottom pct_rank 0 cat 4.0 2.5 3.0 2.5 0.625 1 penguin 2.0 1.0 1.0 1.0 0.250 2 dog 4.0 2.5 3.0 2.5 0.625 3 spider 8.0 4.0 4.0 4.0 1.000 4 snake NaN NaN NaN 5.0 NaN
-
rdiv
(other, axis='columns', level=None, fill_value=None)¶ Get Floating division of dataframe and other, element-wise (binary operator rtruediv).
Equivalent to
other / dataframe
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, truediv.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
reindex
(**kwargs) → DataFrame¶ Conform DataFrame to new index with optional filling logic.
Places NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and
copy=False
.- labelsarray-like, optional
New labels / index to conform the axis specified by ‘axis’ to.
- index, columnsarray-like, optional
New labels / index to conform to, should be specified using keywords. Preferably an Index object to avoid duplicating data.
- axisint or str, optional
Axis to target. Can be either the axis name (‘index’, ‘columns’) or number (0, 1).
- method{None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}
Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index.
None (default): don’t fill gaps
pad / ffill: Propagate last valid observation forward to next valid.
backfill / bfill: Use next valid observation to fill gap.
nearest: Use nearest valid observations to fill gap.
- copybool, default True
Return a new object, even if the passed indexes are the same.
- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuescalar, default np.NaN
Value to use for missing values. Defaults to NaN, but can be any “compatible” value.
- limitint, default None
Maximum number of consecutive elements to forward or backward fill.
- toleranceoptional
Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation
abs(index[indexer] - target) <= tolerance
.Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index’s type.
New in version 0.21.0: (list-like tolerance)
DataFrame with changed index.
DataFrame.set_index : Set row labels. DataFrame.reset_index : Remove row labels or move them to new columns. DataFrame.reindex_like : Change to same indices as other DataFrame.
DataFrame.reindex
supports two calling conventions(index=index_labels, columns=column_labels, ...)
(labels, axis={'index', 'columns'}, ...)
We highly recommend using keyword arguments to clarify your intent.
Create a dataframe with some fictional data.
>>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror'] >>> df = pd.DataFrame({'http_status': [200, 200, 404, 404, 301], ... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]}, ... index=index) >>> df http_status response_time Firefox 200 0.04 Chrome 200 0.02 Safari 404 0.07 IE10 404 0.08 Konqueror 301 1.00
Create a new index and reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned
NaN
.>>> new_index = ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', ... 'Chrome'] >>> df.reindex(new_index) http_status response_time Safari 404.0 0.07 Iceweasel NaN NaN Comodo Dragon NaN NaN IE10 404.0 0.08 Chrome 200.0 0.02
We can fill in the missing values by passing a value to the keyword
fill_value
. Because the index is not monotonically increasing or decreasing, we cannot use arguments to the keywordmethod
to fill theNaN
values.>>> df.reindex(new_index, fill_value=0) http_status response_time Safari 404 0.07 Iceweasel 0 0.00 Comodo Dragon 0 0.00 IE10 404 0.08 Chrome 200 0.02
>>> df.reindex(new_index, fill_value='missing') http_status response_time Safari 404 0.07 Iceweasel missing missing Comodo Dragon missing missing IE10 404 0.08 Chrome 200 0.02
We can also reindex the columns.
>>> df.reindex(columns=['http_status', 'user_agent']) http_status user_agent Firefox 200 NaN Chrome 200 NaN Safari 404 NaN IE10 404 NaN Konqueror 301 NaN
Or we can use “axis-style” keyword arguments
>>> df.reindex(['http_status', 'user_agent'], axis="columns") http_status user_agent Firefox 200 NaN Chrome 200 NaN Safari 404 NaN IE10 404 NaN Konqueror 301 NaN
To further illustrate the filling functionality in
reindex
, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates).>>> date_index = pd.date_range('1/1/2010', periods=6, freq='D') >>> df2 = pd.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]}, ... index=date_index) >>> df2 prices 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0
Suppose we decide to expand the dataframe to cover a wider date range.
>>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D') >>> df2.reindex(date_index2) prices 2009-12-29 NaN 2009-12-30 NaN 2009-12-31 NaN 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 2010-01-07 NaN
The index entries that did not have a value in the original data frame (for example, ‘2009-12-29’) are by default filled with
NaN
. If desired, we can fill in the missing values using one of several options.For example, to back-propagate the last valid value to fill the
NaN
values, passbfill
as an argument to themethod
keyword.>>> df2.reindex(date_index2, method='bfill') prices 2009-12-29 100.0 2009-12-30 100.0 2009-12-31 100.0 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 2010-01-07 NaN
Please note that the
NaN
value present in the original dataframe (at index value 2010-01-03) will not be filled by any of the value propagation schemes. This is because filling while reindexing does not look at dataframe values, but only compares the original and desired indexes. If you do want to fill in theNaN
values present in the original dataframe, use thefillna()
method.See the user guide for more.
-
reindex_like
(other, method: Optional[str] = None, copy: bool = True, limit=None, tolerance=None) → FrameOrSeries¶ Return an object with matching indices as other object.
Conform the object to the same index on all axes. Optional filling logic, placing NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False.
- otherObject of the same data type
Its row and column indices are used to define the new indices of this object.
- method{None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}
Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index.
None (default): don’t fill gaps
pad / ffill: propagate last valid observation forward to next valid
backfill / bfill: use next valid observation to fill gap
nearest: use nearest valid observations to fill gap.
- copybool, default True
Return a new object, even if the passed indexes are the same.
- limitint, default None
Maximum number of consecutive labels to fill for inexact matches.
- toleranceoptional
Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation
abs(index[indexer] - target) <= tolerance
.Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index’s type.
New in version 0.21.0: (list-like tolerance)
- Series or DataFrame
Same type as caller, but with changed indices on each axis.
DataFrame.set_index : Set row labels. DataFrame.reset_index : Remove row labels or move them to new columns. DataFrame.reindex : Change to new indices or expand indices.
Same as calling
.reindex(index=other.index, columns=other.columns,...)
.>>> df1 = pd.DataFrame([[24.3, 75.7, 'high'], ... [31, 87.8, 'high'], ... [22, 71.6, 'medium'], ... [35, 95, 'medium']], ... columns=['temp_celsius', 'temp_fahrenheit', ... 'windspeed'], ... index=pd.date_range(start='2014-02-12', ... end='2014-02-15', freq='D'))
>>> df1 temp_celsius temp_fahrenheit windspeed 2014-02-12 24.3 75.7 high 2014-02-13 31.0 87.8 high 2014-02-14 22.0 71.6 medium 2014-02-15 35.0 95.0 medium
>>> df2 = pd.DataFrame([[28, 'low'], ... [30, 'low'], ... [35.1, 'medium']], ... columns=['temp_celsius', 'windspeed'], ... index=pd.DatetimeIndex(['2014-02-12', '2014-02-13', ... '2014-02-15']))
>>> df2 temp_celsius windspeed 2014-02-12 28.0 low 2014-02-13 30.0 low 2014-02-15 35.1 medium
>>> df2.reindex_like(df1) temp_celsius temp_fahrenheit windspeed 2014-02-12 28.0 NaN low 2014-02-13 30.0 NaN low 2014-02-14 NaN NaN NaN 2014-02-15 35.1 NaN medium
-
rename
(**kwargs) → Optional[pandas.core.frame.DataFrame]¶ Alter axes labels.
Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error.
See the user guide for more.
- mapperdict-like or function
Dict-like or functions transformations to apply to that axis’ values. Use either
mapper
andaxis
to specify the axis to target withmapper
, orindex
andcolumns
.- indexdict-like or function
Alternative to specifying axis (
mapper, axis=0
is equivalent toindex=mapper
).- columnsdict-like or function
Alternative to specifying axis (
mapper, axis=1
is equivalent tocolumns=mapper
).- axisint or str
Axis to target with
mapper
. Can be either the axis name (‘index’, ‘columns’) or number (0, 1). The default is ‘index’.- copybool, default True
Also copy underlying data.
- inplacebool, default False
Whether to return a new DataFrame. If True then value of copy is ignored.
- levelint or level name, default None
In case of a MultiIndex, only rename labels in the specified level.
- errors{‘ignore’, ‘raise’}, default ‘ignore’
If ‘raise’, raise a KeyError when a dict-like mapper, index, or columns contains labels that are not present in the Index being transformed. If ‘ignore’, existing keys will be renamed and extra keys will be ignored.
- DataFrame
DataFrame with the renamed axis labels.
- KeyError
If any of the labels is not found in the selected axis and “errors=’raise’”.
DataFrame.rename_axis : Set the name of the axis.
DataFrame.rename
supports two calling conventions(index=index_mapper, columns=columns_mapper, ...)
(mapper, axis={'index', 'columns'}, ...)
We highly recommend using keyword arguments to clarify your intent.
Rename columns using a mapping:
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6
Rename index using a mapping:
>>> df.rename(index={0: "x", 1: "y", 2: "z"}) A B x 1 4 y 2 5 z 3 6
Cast index labels to a different type:
>>> df.index RangeIndex(start=0, stop=3, step=1) >>> df.rename(index=str).index Index(['0', '1', '2'], dtype='object')
>>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise") Traceback (most recent call last): KeyError: ['C'] not found in axis
Using axis-style parameters
>>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6
>>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6
-
rename_axis
(**kwargs)¶ Set the name of the axis for the index or columns.
- mapperscalar, list-like, optional
Value to set the axis name attribute.
- index, columnsscalar, list-like, dict-like or function, optional
A scalar, list-like, dict-like or functions transformations to apply to that axis’ values.
Use either
mapper
andaxis
to specify the axis to target withmapper
, orindex
and/orcolumns
.Changed in version 0.24.0.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis to rename.
- copybool, default True
Also copy underlying data.
- inplacebool, default False
Modifies the object directly, instead of creating a new Series or DataFrame.
- Series, DataFrame, or None
The same type as the caller or None if inplace is True.
Series.rename : Alter Series index labels or name. DataFrame.rename : Alter DataFrame index labels or name. Index.rename : Set new names on index.
DataFrame.rename_axis
supports two calling conventions(index=index_mapper, columns=columns_mapper, ...)
(mapper, axis={'index', 'columns'}, ...)
The first calling convention will only modify the names of the index and/or the names of the Index object that is the columns. In this case, the parameter
copy
is ignored.The second calling convention will modify the names of the the corresponding index if mapper is a list or a scalar. However, if mapper is dict-like or a function, it will use the deprecated behavior of modifying the axis labels.
We highly recommend using keyword arguments to clarify your intent.
Series
>>> s = pd.Series(["dog", "cat", "monkey"]) >>> s 0 dog 1 cat 2 monkey dtype: object >>> s.rename_axis("animal") animal 0 dog 1 cat 2 monkey dtype: object
DataFrame
>>> df = pd.DataFrame({"num_legs": [4, 4, 2], ... "num_arms": [0, 0, 2]}, ... ["dog", "cat", "monkey"]) >>> df num_legs num_arms dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("animal") >>> df num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("limbs", axis="columns") >>> df limbs num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2
MultiIndex
>>> df.index = pd.MultiIndex.from_product([['mammal'], ... ['dog', 'cat', 'monkey']], ... names=['type', 'name']) >>> df limbs num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2
>>> df.rename_axis(index={'type': 'class'}) limbs num_legs num_arms class name mammal dog 4 0 cat 4 0 monkey 2 2
>>> df.rename_axis(columns=str.upper) LIMBS num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2
-
reorder_levels
(order, axis=0) → pandas.core.frame.DataFrame¶ Rearrange index levels using input order. May not drop or duplicate levels.
- orderlist of int or list of str
List representing new level order. Reference level by number (position) or by key (label).
- axisint
Where to reorder levels.
DataFrame
-
replace
(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad')¶ Replace values given in to_replace with value.
Values of the DataFrame are replaced with other values dynamically. This differs from updating with
.loc
or.iloc
, which require you to specify a location to update with some value.- to_replacestr, regex, list, dict, Series, int, float, or None
How to find the values that will be replaced.
numeric, str or regex:
numeric: numeric values equal to to_replace will be replaced with value
str: string exactly matching to_replace will be replaced with value
regex: regexs matching to_replace will be replaced with value
list of str, regex, or numeric:
First, if to_replace and value are both lists, they must be the same length.
Second, if
regex=True
then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use.str, regex and numeric rules apply as above.
dict:
Dicts can be used to specify different replacement values for different existing values. For example,
{'a': 'b', 'y': 'z'}
replaces the value ‘a’ with ‘b’ and ‘y’ with ‘z’. To use a dict in this way the value parameter should be None.For a DataFrame a dict can specify that different values should be replaced in different columns. For example,
{'a': 1, 'b': 'z'}
looks for the value 1 in column ‘a’ and the value ‘z’ in column ‘b’ and replaces these values with whatever is specified in value. The value parameter should not beNone
in this case. You can treat this as a special case of passing two lists except that you are specifying the column to search in.For a DataFrame nested dictionaries, e.g.,
{'a': {'b': np.nan}}
, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with NaN. The value parameter should beNone
to use a nested dict in this way. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.
None:
This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also
None
then this must be a nested dictionary or Series.
See the examples section for examples of each of these.
- valuescalar, dict, list, str, regex, default None
Value to replace any values matching to_replace with. For a DataFrame a dict of values can be used to specify which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.
- inplacebool, default False
If True, in place. Note: this will modify any other views on this object (e.g. a column from a DataFrame). Returns the caller if this is True.
- limitint, default None
Maximum size gap to forward or backward fill.
- regexbool or same types as to_replace, default False
Whether to interpret to_replace and/or value as regular expressions. If this is
True
then to_replace must be a string. Alternatively, this could be a regular expression or a list, dict, or array of regular expressions in which case to_replace must beNone
.- method{‘pad’, ‘ffill’, ‘bfill’, None}
The method to use when for replacement, when to_replace is a scalar, list or tuple and value is
None
.Changed in version 0.23.0: Added to DataFrame.
- DataFrame
Object after replacement.
- AssertionError
If regex is not a
bool
and to_replace is notNone
.
- TypeError
If to_replace is a
dict
and value is not alist
,dict
,ndarray
, orSeries
If to_replace is
None
and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series.When replacing multiple
bool
ordatetime64
objects and the arguments to to_replace does not match the type of the value being replaced
- ValueError
If a
list
or anndarray
is passed to to_replace and value but they are not the same length.
DataFrame.fillna : Fill NA values. DataFrame.where : Replace values based on boolean condition. Series.str.replace : Simple string replacement.
Regex substitution is performed under the hood with
re.sub
. The rules for substitution forre.sub
are the same.Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.
This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.
When dict is used as the to_replace value, it is like key(s) in the dict are the to_replace part and value(s) in the dict are the value parameter.
Scalar `to_replace` and `value`
>>> s = pd.Series([0, 1, 2, 3, 4]) >>> s.replace(0, 5) 0 5 1 1 2 2 3 3 4 4 dtype: int64
>>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4], ... 'B': [5, 6, 7, 8, 9], ... 'C': ['a', 'b', 'c', 'd', 'e']}) >>> df.replace(0, 5) A B C 0 5 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e
List-like `to_replace`
>>> df.replace([0, 1, 2, 3], 4) A B C 0 4 5 a 1 4 6 b 2 4 7 c 3 4 8 d 4 4 9 e
>>> df.replace([0, 1, 2, 3], [4, 3, 2, 1]) A B C 0 4 5 a 1 3 6 b 2 2 7 c 3 1 8 d 4 4 9 e
>>> s.replace([1, 2], method='bfill') 0 0 1 3 2 3 3 3 4 4 dtype: int64
dict-like `to_replace`
>>> df.replace({0: 10, 1: 100}) A B C 0 10 5 a 1 100 6 b 2 2 7 c 3 3 8 d 4 4 9 e
>>> df.replace({'A': 0, 'B': 5}, 100) A B C 0 100 100 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e
>>> df.replace({'A': {0: 100, 4: 400}}) A B C 0 100 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 400 9 e
Regular expression `to_replace`
>>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'], ... 'B': ['abc', 'bar', 'xyz']}) >>> df.replace(to_replace=r'^ba.$', value='new', regex=True) A B 0 new abc 1 foo new 2 bait xyz
>>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True) A B 0 new abc 1 foo bar 2 bait xyz
>>> df.replace(regex=r'^ba.$', value='new') A B 0 new abc 1 foo new 2 bait xyz
>>> df.replace(regex={r'^ba.$': 'new', 'foo': 'xyz'}) A B 0 new abc 1 xyz new 2 bait xyz
>>> df.replace(regex=[r'^ba.$', 'foo'], value='new') A B 0 new abc 1 new new 2 bait xyz
Note that when replacing multiple
bool
ordatetime64
objects, the data types in the to_replace parameter must match the data type of the value being replaced:>>> df = pd.DataFrame({'A': [True, False, True], ... 'B': [False, True, False]}) >>> df.replace({'a string': 'new value', True: False}) # raises Traceback (most recent call last): ... TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str'
This raises a
TypeError
because one of thedict
keys is not of the correct type for replacement.Compare the behavior of
s.replace({'a': None})
ands.replace('a', None)
to understand the peculiarities of the to_replace parameter:>>> s = pd.Series([10, 'a', 'a', 'b', 'a'])
When one uses a dict as the to_replace value, it is like the value(s) in the dict are equal to the value parameter.
s.replace({'a': None})
is equivalent tos.replace(to_replace={'a': None}, value=None, method=None)
:>>> s.replace({'a': None}) 0 10 1 None 2 None 3 b 4 None dtype: object
When
value=None
and to_replace is a scalar, list or tuple, replace uses the method parameter (default ‘pad’) to do the replacement. So this is why the ‘a’ values are being replaced by 10 in rows 1 and 2 and ‘b’ in row 4 in this case. The commands.replace('a', None)
is actually equivalent tos.replace(to_replace='a', value=None, method='pad')
:>>> s.replace('a', None) 0 10 1 10 2 10 3 b 4 b dtype: object
-
reproject
(spatial_reference, transformation=None, inplace=False)¶ Reprojects a given dataframe into a new coordinate system.
Argument
Description
spatial_reference
Required Integer/SpatialReference. The spatial reference the data should be reprojected into.
transformation
Optional string. The optional transformation string.
inplace
Optional boolean. Default False. Modify the SpatialDataFrame in place (do not create a new object)
- Returns
SpatialDataFrame
-
resample
(rule, axis=0, closed: Optional[str] = None, label: Optional[str] = None, convention: str = 'start', kind: Optional[str] = None, loffset=None, base: int = 0, on=None, level=None)¶ Resample time-series data.
Convenience method for frequency conversion and resampling of time series. Object must have a datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or pass datetime-like values to the on or level keyword.
- ruleDateOffset, Timedelta or str
The offset string or object representing target conversion.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
Which axis to use for up- or down-sampling. For Series this will default to 0, i.e. along the rows. Must be DatetimeIndex, TimedeltaIndex or PeriodIndex.
- closed{‘right’, ‘left’}, default None
Which side of bin interval is closed. The default is ‘left’ for all frequency offsets except for ‘M’, ‘A’, ‘Q’, ‘BM’, ‘BA’, ‘BQ’, and ‘W’ which all have a default of ‘right’.
- label{‘right’, ‘left’}, default None
Which bin edge label to label bucket with. The default is ‘left’ for all frequency offsets except for ‘M’, ‘A’, ‘Q’, ‘BM’, ‘BA’, ‘BQ’, and ‘W’ which all have a default of ‘right’.
- convention{‘start’, ‘end’, ‘s’, ‘e’}, default ‘start’
For PeriodIndex only, controls whether to use the start or end of rule.
- kind{‘timestamp’, ‘period’}, optional, default None
Pass ‘timestamp’ to convert the resulting index to a DateTimeIndex or ‘period’ to convert it to a PeriodIndex. By default the input representation is retained.
- loffsettimedelta, default None
Adjust the resampled time labels.
- baseint, default 0
For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0.
- onstr, optional
For a DataFrame, column to use instead of index for resampling. Column must be datetime-like.
- levelstr or int, optional
For a MultiIndex, level (name or number) to use for resampling. level must be datetime-like.
Resampler object
groupby : Group by mapping, function, label, or list of labels. Series.resample : Resample a Series. DataFrame.resample: Resample a DataFrame.
See the user guide for more.
To learn more about the offset strings, please see this link.
Start by creating a series with 9 one minute timestamps.
>>> index = pd.date_range('1/1/2000', periods=9, freq='T') >>> series = pd.Series(range(9), index=index) >>> series 2000-01-01 00:00:00 0 2000-01-01 00:01:00 1 2000-01-01 00:02:00 2 2000-01-01 00:03:00 3 2000-01-01 00:04:00 4 2000-01-01 00:05:00 5 2000-01-01 00:06:00 6 2000-01-01 00:07:00 7 2000-01-01 00:08:00 8 Freq: T, dtype: int64
Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin.
>>> series.resample('3T').sum() 2000-01-01 00:00:00 3 2000-01-01 00:03:00 12 2000-01-01 00:06:00 21 Freq: 3T, dtype: int64
Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels. For example, in the original series the bucket
2000-01-01 00:03:00
contains the value 3, but the summed value in the resampled bucket with the label2000-01-01 00:03:00
does not include 3 (if it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval as illustrated in the example below this one.>>> series.resample('3T', label='right').sum() 2000-01-01 00:03:00 3 2000-01-01 00:06:00 12 2000-01-01 00:09:00 21 Freq: 3T, dtype: int64
Downsample the series into 3 minute bins as above, but close the right side of the bin interval.
>>> series.resample('3T', label='right', closed='right').sum() 2000-01-01 00:00:00 0 2000-01-01 00:03:00 6 2000-01-01 00:06:00 15 2000-01-01 00:09:00 15 Freq: 3T, dtype: int64
Upsample the series into 30 second bins.
>>> series.resample('30S').asfreq()[0:5] # Select first 5 rows 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 1.0 2000-01-01 00:01:30 NaN 2000-01-01 00:02:00 2.0 Freq: 30S, dtype: float64
Upsample the series into 30 second bins and fill the
NaN
values using thepad
method.>>> series.resample('30S').pad()[0:5] 2000-01-01 00:00:00 0 2000-01-01 00:00:30 0 2000-01-01 00:01:00 1 2000-01-01 00:01:30 1 2000-01-01 00:02:00 2 Freq: 30S, dtype: int64
Upsample the series into 30 second bins and fill the
NaN
values using thebfill
method.>>> series.resample('30S').bfill()[0:5] 2000-01-01 00:00:00 0 2000-01-01 00:00:30 1 2000-01-01 00:01:00 1 2000-01-01 00:01:30 2 2000-01-01 00:02:00 2 Freq: 30S, dtype: int64
Pass a custom function via
apply
>>> def custom_resampler(array_like): ... return np.sum(array_like) + 5 ... >>> series.resample('3T').apply(custom_resampler) 2000-01-01 00:00:00 8 2000-01-01 00:03:00 17 2000-01-01 00:06:00 26 Freq: 3T, dtype: int64
For a Series with a PeriodIndex, the keyword convention can be used to control whether to use the start or end of rule.
Resample a year by quarter using ‘start’ convention. Values are assigned to the first quarter of the period.
>>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01', ... freq='A', ... periods=2)) >>> s 2012 1 2013 2 Freq: A-DEC, dtype: int64 >>> s.resample('Q', convention='start').asfreq() 2012Q1 1.0 2012Q2 NaN 2012Q3 NaN 2012Q4 NaN 2013Q1 2.0 2013Q2 NaN 2013Q3 NaN 2013Q4 NaN Freq: Q-DEC, dtype: float64
Resample quarters by month using ‘end’ convention. Values are assigned to the last month of the period.
>>> q = pd.Series([1, 2, 3, 4], index=pd.period_range('2018-01-01', ... freq='Q', ... periods=4)) >>> q 2018Q1 1 2018Q2 2 2018Q3 3 2018Q4 4 Freq: Q-DEC, dtype: int64 >>> q.resample('M', convention='end').asfreq() 2018-03 1.0 2018-04 NaN 2018-05 NaN 2018-06 2.0 2018-07 NaN 2018-08 NaN 2018-09 3.0 2018-10 NaN 2018-11 NaN 2018-12 4.0 Freq: M, dtype: float64
For DataFrame objects, the keyword on can be used to specify the column instead of the index for resampling.
>>> d = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19], ... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]}) >>> df = pd.DataFrame(d) >>> df['week_starting'] = pd.date_range('01/01/2018', ... periods=8, ... freq='W') >>> df price volume week_starting 0 10 50 2018-01-07 1 11 60 2018-01-14 2 9 40 2018-01-21 3 13 100 2018-01-28 4 14 50 2018-02-04 5 18 100 2018-02-11 6 17 40 2018-02-18 7 19 50 2018-02-25 >>> df.resample('M', on='week_starting').mean() price volume week_starting 2018-01-31 10.75 62.5 2018-02-28 17.00 60.0
For a DataFrame with MultiIndex, the keyword level can be used to specify on which level the resampling needs to take place.
>>> days = pd.date_range('1/1/2000', periods=4, freq='D') >>> d2 = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19], ... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]}) >>> df2 = pd.DataFrame(d2, ... index=pd.MultiIndex.from_product([days, ... ['morning', ... 'afternoon']] ... )) >>> df2 price volume 2000-01-01 morning 10 50 afternoon 11 60 2000-01-02 morning 9 40 afternoon 13 100 2000-01-03 morning 14 50 afternoon 18 100 2000-01-04 morning 17 40 afternoon 19 50 >>> df2.resample('D', level=0).sum() price volume 2000-01-01 21 110 2000-01-02 22 140 2000-01-03 32 150 2000-01-04 36 90
-
reset_index
(level: collections.abc.Hashable = None, drop: bool = False, inplace: bool = False, col_level: collections.abc.Hashable = 0, col_fill: collections.abc.Hashable = '') → Optional[pandas.core.frame.DataFrame]¶ Reset the index, or a level of it.
Reset the index of the DataFrame, and use the default one instead. If the DataFrame has a MultiIndex, this method can remove one or more levels.
- levelint, str, tuple, or list, default None
Only remove the given levels from the index. Removes all levels by default.
- dropbool, default False
Do not try to insert index into dataframe columns. This resets the index to the default integer index.
- inplacebool, default False
Modify the DataFrame in place (do not create a new object).
- col_levelint or str, default 0
If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level.
- col_fillobject, default ‘’
If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated.
- DataFrame or None
DataFrame with the new index or None if
inplace=True
.
DataFrame.set_index : Opposite of reset_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame.
>>> df = pd.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal NaN
When we reset the index, the old index is added as a column, and a new sequential index is used:
>>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN
We can use the drop parameter to avoid the old index being added as a column:
>>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal NaN
You can also use reset_index with MultiIndex.
>>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'), ... ('species', 'type')]) >>> df = pd.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df speed species max type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey NaN jump
If the index has multiple levels, we can reset a subset of them:
>>> df.reset_index(level='class') class speed species max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump
If we are not dropping the index, by default, it is placed in the top level. We can place it in another level:
>>> df.reset_index(level='class', col_level=1) speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump
When the index is inserted under another level, we can specify under which one with the parameter col_fill:
>>> df.reset_index(level='class', col_level=1, col_fill='species') species speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump
If we specify a nonexistent level for col_fill, it is created:
>>> df.reset_index(level='class', col_level=1, col_fill='genus') genus speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump
-
rfloordiv
(other, axis='columns', level=None, fill_value=None)¶ Get Integer division of dataframe and other, element-wise (binary operator rfloordiv).
Equivalent to
other // dataframe
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, floordiv.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
rmod
(other, axis='columns', level=None, fill_value=None)¶ Get Modulo of dataframe and other, element-wise (binary operator rmod).
Equivalent to
other % dataframe
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, mod.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
rmul
(other, axis='columns', level=None, fill_value=None)¶ Get Multiplication of dataframe and other, element-wise (binary operator rmul).
Equivalent to
other * dataframe
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, mul.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
rolling
(window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None)¶ Provide rolling window calculations.
- windowint, offset, or BaseIndexer subclass
Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size.
If its an offset then this will be the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetimelike indexes.
If a BaseIndexer subclass is passed, calculates the window boundaries based on the defined
get_window_bounds
method. Additional rolling keyword arguments, namely min_periods, center, and closed will be passed to get_window_bounds.- min_periodsint, default None
Minimum number of observations in window required to have a value (otherwise result is NA). For a window that is specified by an offset, min_periods will default to 1. Otherwise, min_periods will default to the size of the window.
- centerbool, default False
Set the labels at the center of the window.
- win_typestr, default None
Provide a window type. If
None
, all points are evenly weighted. See the notes below for further information.- onstr, optional
For a DataFrame, a datetime-like column or MultiIndex level on which to calculate the rolling window, rather than the DataFrame’s index. Provided integer column is ignored and excluded from result since an integer index is not used to calculate the rolling window.
axis : int or str, default 0 closed : str, default None
Make the interval closed on the ‘right’, ‘left’, ‘both’ or ‘neither’ endpoints. For offset-based windows, it defaults to ‘right’. For fixed windows, defaults to ‘both’. Remaining cases not implemented for fixed windows.
a Window or Rolling sub-classed for the particular operation
expanding : Provides expanding transformations. ewm : Provides exponential weighted functions.
By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting
center=True
.To learn more about the offsets & frequency strings, please see this link.
The recognized win_types are:
boxcar
triang
blackman
hamming
bartlett
parzen
bohman
blackmanharris
nuttall
barthann
kaiser
(needs beta)gaussian
(needs std)general_gaussian
(needs power, width)slepian
(needs width)exponential
(needs tau), center is set to None.
If
win_type=None
all points are evenly weighted. To learn more about different window types see scipy.signal window functions.>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0
Rolling sum with a window length of 2, using the ‘triang’ window type.
>>> df.rolling(2, win_type='triang').sum() B 0 NaN 1 0.5 2 1.5 3 NaN 4 NaN
Rolling sum with a window length of 2, using the ‘gaussian’ window type (note how we need to specify std).
>>> df.rolling(2, win_type='gaussian').sum(std=3) B 0 NaN 1 0.986207 2 2.958621 3 NaN 4 NaN
Rolling sum with a window length of 2, min_periods defaults to the window length.
>>> df.rolling(2).sum() B 0 NaN 1 1.0 2 3.0 3 NaN 4 NaN
Same as above, but explicitly set the min_periods
>>> df.rolling(2, min_periods=1).sum() B 0 0.0 1 1.0 2 3.0 3 2.0 4 4.0
A ragged (meaning not-a-regular frequency), time-indexed DataFrame
>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}, ... index = [pd.Timestamp('20130101 09:00:00'), ... pd.Timestamp('20130101 09:00:02'), ... pd.Timestamp('20130101 09:00:03'), ... pd.Timestamp('20130101 09:00:05'), ... pd.Timestamp('20130101 09:00:06')])
>>> df B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 2.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0
Contrasting to an integer rolling window, this will roll a variable length window corresponding to the time period. The default for min_periods is 1.
>>> df.rolling('2s').sum() B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 3.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0
-
round
(decimals=0, *args, **kwargs) → pandas.core.frame.DataFrame¶ Round a DataFrame to a variable number of decimal places.
- decimalsint, dict, Series
Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if decimals is a dict-like, or in the index if decimals is a Series. Any columns not included in decimals will be left as is. Elements of decimals which are not columns of the input will be ignored.
- *args
Additional keywords have no effect but might be accepted for compatibility with numpy.
- **kwargs
Additional keywords have no effect but might be accepted for compatibility with numpy.
- DataFrame
A DataFrame with the affected columns rounded to the specified number of decimal places.
numpy.around : Round a numpy array to the given number of decimals. Series.round : Round a Series to the given number of decimals.
>>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)], ... columns=['dogs', 'cats']) >>> df dogs cats 0 0.21 0.32 1 0.01 0.67 2 0.66 0.03 3 0.21 0.18
By providing an integer each column is rounded to the same number of decimal places
>>> df.round(1) dogs cats 0 0.2 0.3 1 0.0 0.7 2 0.7 0.0 3 0.2 0.2
With a dict, the number of places for specific columns can be specified with the column names as key and the number of decimal places as value
>>> df.round({'dogs': 1, 'cats': 0}) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0
Using a Series, the number of places for specific columns can be specified with the column names as index and the number of decimal places as value
>>> decimals = pd.Series([0, 1], index=['cats', 'dogs']) >>> df.round(decimals) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0
-
rpow
(other, axis='columns', level=None, fill_value=None)¶ Get Exponential power of dataframe and other, element-wise (binary operator rpow).
Equivalent to
other ** dataframe
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, pow.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
rsub
(other, axis='columns', level=None, fill_value=None)¶ Get Subtraction of dataframe and other, element-wise (binary operator rsub).
Equivalent to
other - dataframe
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, sub.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
rtruediv
(other, axis='columns', level=None, fill_value=None)¶ Get Floating division of dataframe and other, element-wise (binary operator rtruediv).
Equivalent to
other / dataframe
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, truediv.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
sample
(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None) → FrameOrSeries¶ Return a random sample of items from an axis of object.
You can use random_state for reproducibility.
- nint, optional
Number of items from axis to return. Cannot be used with frac. Default = 1 if frac = None.
- fracfloat, optional
Fraction of axis items to return. Cannot be used with n.
- replacebool, default False
Allow or disallow sampling of the same row more than once.
- weightsstr or ndarray-like, optional
Default ‘None’ results in equal probability weighting. If passed a Series, will align with target object on index. Index values in weights not found in sampled object will be ignored and index values in sampled object not in weights will be assigned weights of zero. If called on a DataFrame, will accept the name of a column when axis = 0. Unless weights are a Series, weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. Infinite values not allowed.
- random_stateint or numpy.random.RandomState, optional
Seed for the random number generator (if int), or numpy RandomState object.
- axis{0 or ‘index’, 1 or ‘columns’, None}, default None
Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames).
- Series or DataFrame
A new object of same type as caller containing n items randomly sampled from the caller object.
- numpy.random.choice: Generates a random sample from a given 1-D numpy
array.
If frac > 1, replacement should be set to True.
>>> df = pd.DataFrame({'num_legs': [2, 4, 8, 0], ... 'num_wings': [2, 0, 0, 0], ... 'num_specimen_seen': [10, 2, 1, 8]}, ... index=['falcon', 'dog', 'spider', 'fish']) >>> df num_legs num_wings num_specimen_seen falcon 2 2 10 dog 4 0 2 spider 8 0 1 fish 0 0 8
Extract 3 random elements from the
Series
df['num_legs']
: Note that we use random_state to ensure the reproducibility of the examples.>>> df['num_legs'].sample(n=3, random_state=1) fish 0 spider 8 falcon 2 Name: num_legs, dtype: int64
A random 50% sample of the
DataFrame
with replacement:>>> df.sample(frac=0.5, replace=True, random_state=1) num_legs num_wings num_specimen_seen dog 4 0 2 fish 0 0 8
An upsample sample of the
DataFrame
with replacement: Note that replace parameter has to be True for frac parameter > 1.>>> df.sample(frac=2, replace=True, random_state=1) num_legs num_wings num_specimen_seen dog 4 0 2 fish 0 0 8 falcon 2 2 10 falcon 2 2 10 fish 0 0 8 dog 4 0 2 fish 0 0 8 dog 4 0 2
Using a DataFrame column as weights. Rows with larger value in the num_specimen_seen column are more likely to be sampled.
>>> df.sample(n=2, weights='num_specimen_seen', random_state=1) num_legs num_wings num_specimen_seen falcon 2 2 10 fish 0 0 8
-
segment_along_line
(start_measure, end_measure, use_percentage=False)¶ Returns a Polyline between start and end measures. Similar to Polyline.positionAlongLine but will return a polyline segment between two points on the polyline instead of a single point.
- Parameters:
- start_measure
The starting distance from the beginning of the
line.
- end_measure
The ending distance from the beginning of the
line.
- use_percentage
The start and end measures may be specified as
fixed units or as a ratio. If True, start_measure and end_measure are used as a percentage; if False, start_measure and end_measure are used as a distance. For percentages, the measures should be expressed as a double from 0.0 (0 percent) to 1.0 (100 percent).
-
select_by_location
(other, matches_only=True)¶ Selects all rows in a given SpatialDataFrame based on a given geometry
Argument
Description
other
Required Geometry. A geometry object to check for intersection.
matches_only
Optional boolean. if true, only matched records will be returned, else a field called ‘select_by_location’ will be added to the dataframe with the results of the select by location.
- Returns
SpatialDataFrame
-
select_dtypes
(include=None, exclude=None) → pandas.core.frame.DataFrame¶ Return a subset of the DataFrame’s columns based on the column dtypes.
- include, excludescalar or list-like
A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied.
- DataFrame
The subset of the frame including the dtypes in
include
and excluding the dtypes inexclude
.
- ValueError
If both of
include
andexclude
are emptyIf
include
andexclude
have overlapping elementsIf any kind of string dtype is passed in.
To select all numeric types, use
np.number
or'number'
To select strings you must use the
object
dtype, but note that this will return all object dtype columnsSee the numpy dtype hierarchy
To select datetimes, use
np.datetime64
,'datetime'
or'datetime64'
To select timedeltas, use
np.timedelta64
,'timedelta'
or'timedelta64'
To select Pandas categorical dtypes, use
'category'
To select Pandas datetimetz dtypes, use
'datetimetz'
(new in 0.20.0) or'datetime64[ns, tz]'
>>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0
>>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False
>>> df.select_dtypes(include=['float64']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0
>>> df.select_dtypes(exclude=['int']) b c 0 True 1.0 1 False 2.0 2 True 1.0 3 False 2.0 4 True 1.0 5 False 2.0
-
sem
(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)¶ Return unbiased standard error of the mean over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument
axis : {index (0), columns (1)} skipna : bool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- ddofint, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
- numeric_onlybool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
Series or DataFrame (if level specified)
-
property
series_extent
¶ Return a single bounding box (xmin, ymin, xmax, ymax) for all geometries
This is a shortcut for calculating the min/max x and y bounds individually.
-
set_axis
(labels, axis=0, inplace=False)¶ Assign desired index to given axis.
Indexes for column or row labels can be changed by assigning a list-like or Index.
Changed in version 0.21.0: The signature is now labels and axis, consistent with the rest of pandas API. Previously, the axis and labels arguments were respectively the first and second positional arguments.
- labelslist-like, Index
The values for the new index.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis to update. The value 0 identifies the rows, and 1 identifies the columns.
- inplacebool, default False
Whether to return a new %(klass)s instance.
- renamed%(klass)s or None
An object of same type as caller if inplace=False, None otherwise.
DataFrame.rename_axis : Alter the name of the index or columns.
Series
>>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64
>>> s.set_axis(['a', 'b', 'c'], axis=0) a 1 b 2 c 3 dtype: int64
DataFrame
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
Change the row labels.
>>> df.set_axis(['a', 'b', 'c'], axis='index') A B a 1 4 b 2 5 c 3 6
Change the column labels.
>>> df.set_axis(['I', 'II'], axis='columns') I II 0 1 4 1 2 5 2 3 6
Now, update the labels inplace.
>>> df.set_axis(['i', 'ii'], axis='columns', inplace=True) >>> df i ii 0 1 4 1 2 5 2 3 6
-
set_geometry
(col, drop=False, inplace=False, sr=None)¶ Set the SpatialDataFrame geometry using either an existing column or the specified input. By default yields a new object.
The original geometry column is replaced with the input.
Argument
Description
col
Required string/np.array. column label or array
drop
Optional boolean. Default True. Delete column to be used as the new geometry
inplace
Optional boolean. Default False. Modify the SpatialDataFrame in place (do not create a new object)
sr
Optional SpatialReference/Integer. The wkid value Coordinate system to use. If passed, overrides both DataFrame and col’s sr. Otherwise, tries to get sr from passed col values or DataFrame.
- Returns
SpatialDataFrame
-
set_index
(keys, drop=True, append=False, inplace=False, verify_integrity=False)¶ Set the DataFrame index using existing columns.
Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it.
- keyslabel or array-like or list of labels/arrays
This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, “array” encompasses
Series
,Index
,np.ndarray
, and instances ofIterator
.- dropbool, default True
Delete columns to be used as the new index.
- appendbool, default False
Whether to append columns to existing index.
- inplacebool, default False
Modify the DataFrame in place (do not create a new object).
- verify_integritybool, default False
Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method.
- DataFrame
Changed row labels.
DataFrame.reset_index : Opposite of set_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame.
>>> df = pd.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale': [55, 40, 84, 31]}) >>> df month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31
Set the index to become the ‘month’ column:
>>> df.set_index('month') year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31
Create a MultiIndex using columns ‘year’ and ‘month’:
>>> df.set_index(['year', 'month']) sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31
Create a MultiIndex using an Index and a column:
>>> df.set_index([pd.Index([1, 2, 3, 4]), 'year']) month sale year 1 2012 1 55 2 2014 4 40 3 2013 7 84 4 2014 10 31
Create a MultiIndex using two Series:
>>> s = pd.Series([1, 2, 3, 4]) >>> df.set_index([s, s**2]) month year sale 1 1 1 2012 55 2 4 4 2014 40 3 9 7 2013 84 4 16 10 2014 31
-
property
shape
¶ Return a tuple representing the dimensionality of the DataFrame.
ndarray.shape
>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.shape (2, 2)
>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4], ... 'col3': [5, 6]}) >>> df.shape (2, 3)
-
shift
(periods=1, freq=None, axis=0, fill_value=None) → pandas.core.frame.DataFrame¶ Shift index by desired number of periods with an optional time freq.
When freq is not passed, shift the index without realigning the data. If freq is passed (in this case, the index must be date or datetime, or it will raise a NotImplementedError), the index will be increased using the periods and the freq.
- periodsint
Number of periods to shift. Can be positive or negative.
- freqDateOffset, tseries.offsets, timedelta, or str, optional
Offset to use from the tseries module or time rule (e.g. ‘EOM’). If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data.
- axis{0 or ‘index’, 1 or ‘columns’, None}, default None
Shift direction.
- fill_valueobject, optional
The scalar value to use for newly introduced missing values. the default depends on the dtype of self. For numeric data,
np.nan
is used. For datetime, timedelta, or period data, etc.NaT
is used. For extension dtypes,self.dtype.na_value
is used.Changed in version 0.24.0.
- DataFrame
Copy of input object, shifted.
Index.shift : Shift values of Index. DatetimeIndex.shift : Shift values of DatetimeIndex. PeriodIndex.shift : Shift values of PeriodIndex. tshift : Shift the time index, using the index’s frequency if
available.
>>> df = pd.DataFrame({'Col1': [10, 20, 15, 30, 45], ... 'Col2': [13, 23, 18, 33, 48], ... 'Col3': [17, 27, 22, 37, 52]})
>>> df.shift(periods=3) Col1 Col2 Col3 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 10.0 13.0 17.0 4 20.0 23.0 27.0
>>> df.shift(periods=1, axis='columns') Col1 Col2 Col3 0 NaN 10.0 13.0 1 NaN 20.0 23.0 2 NaN 15.0 18.0 3 NaN 30.0 33.0 4 NaN 45.0 48.0
>>> df.shift(periods=3, fill_value=0) Col1 Col2 Col3 0 0 0 0 1 0 0 0 2 0 0 0 3 10 13 17 4 20 23 27
-
property
sindex
¶
-
property
size
¶ Return an int representing the number of elements in this object.
Return the number of rows if Series. Otherwise return the number of rows times number of columns if DataFrame.
ndarray.size : Number of elements in the array.
>>> s = pd.Series({'a': 1, 'b': 2, 'c': 3}) >>> s.size 3
>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.size 4
-
skew
(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)¶ Return unbiased skew over requested axis.
Normalized by N-1.
- axis{index (0), columns (1)}
Axis for the function to be applied on.
- skipnabool, default True
Exclude NA/null values when computing the result.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- numeric_onlybool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- **kwargs
Additional keyword arguments to be passed to the function.
Series or DataFrame (if level specified)
-
slice_shift
(periods: int = 1, axis=0) → FrameOrSeries¶ Equivalent to shift without copying data.
The shifted data will not include the dropped periods and the shifted axis will be smaller than the original.
- periodsint
Number of periods to move, can be positive or negative.
shifted : same type as caller
While the slice_shift is faster than shift, you may pay for it later during alignment.
-
snap_to_line
(second_geometry)¶ Returns a new point based on in_point snapped to this geometry.
- Paramters:
- second_geometry
a second geometry
-
sort_index
(axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, ignore_index: bool = False)¶ Sort object by labels (along an axis).
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis along which to sort. The value 0 identifies the rows, and 1 identifies the columns.
- levelint or level name or list of ints or list of level names
If not None, sort on values in specified index level(s).
- ascendingbool, default True
Sort ascending vs. descending.
- inplacebool, default False
If True, perform operation in-place.
- kind{‘quicksort’, ‘mergesort’, ‘heapsort’}, default ‘quicksort’
Choice of sorting algorithm. See also ndarray.np.sort for more information. mergesort is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label.
- na_position{‘first’, ‘last’}, default ‘last’
Puts NaNs at the beginning if first; last puts NaNs at the end. Not implemented for MultiIndex.
- sort_remainingbool, default True
If True and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level.
- ignore_indexbool, default False
If True, the resulting axis will be labeled 0, 1, …, n - 1.
New in version 1.0.0.
- sorted_objDataFrame or None
DataFrame with sorted index if inplace=False, None otherwise.
-
sort_values
(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False)¶ Sort by the values along either axis.
- bystr or list of str
Name or list of names to sort by.
if axis is 0 or ‘index’ then by may contain index levels and/or column labels.
if axis is 1 or ‘columns’ then by may contain column levels and/or index labels.
Changed in version 0.23.0: Allow specifying index or column level names.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
Axis to be sorted.
- ascendingbool or list of bool, default True
Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by.
- inplacebool, default False
If True, perform operation in-place.
- kind{‘quicksort’, ‘mergesort’, ‘heapsort’}, default ‘quicksort’
Choice of sorting algorithm. See also ndarray.np.sort for more information. mergesort is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label.
- na_position{‘first’, ‘last’}, default ‘last’
Puts NaNs at the beginning if first; last puts NaNs at the end.
- ignore_indexbool, default False
If True, the resulting axis will be labeled 0, 1, …, n - 1.
New in version 1.0.0.
- sorted_objDataFrame or None
DataFrame with sorted values if inplace=False, None otherwise.
>>> df = pd.DataFrame({ ... 'col1': ['A', 'A', 'B', np.nan, 'D', 'C'], ... 'col2': [2, 1, 9, 8, 7, 4], ... 'col3': [0, 1, 9, 4, 2, 3], ... }) >>> df col1 col2 col3 0 A 2 0 1 A 1 1 2 B 9 9 3 NaN 8 4 4 D 7 2 5 C 4 3
Sort by col1
>>> df.sort_values(by=['col1']) col1 col2 col3 0 A 2 0 1 A 1 1 2 B 9 9 5 C 4 3 4 D 7 2 3 NaN 8 4
Sort by multiple columns
>>> df.sort_values(by=['col1', 'col2']) col1 col2 col3 1 A 1 1 0 A 2 0 2 B 9 9 5 C 4 3 4 D 7 2 3 NaN 8 4
Sort Descending
>>> df.sort_values(by='col1', ascending=False) col1 col2 col3 4 D 7 2 5 C 4 3 2 B 9 9 0 A 2 0 1 A 1 1 3 NaN 8 4
Putting NAs first
>>> df.sort_values(by='col1', ascending=False, na_position='first') col1 col2 col3 3 NaN 8 4 4 D 7 2 5 C 4 3 2 B 9 9 0 A 2 0 1 A 1 1
-
sparse
¶ alias of
pandas.core.arrays.sparse.accessor.SparseFrameAccessor
-
spatial
¶ alias of
arcgis.features.geo._accessor.GeoAccessor
-
property
spatial_reference
¶ The spatial reference of the geometry.
-
squeeze
(axis=None)¶ Squeeze 1 dimensional axis objects into scalars.
Series or DataFrames with a single element are squeezed to a scalar. DataFrames with a single column or a single row are squeezed to a Series. Otherwise the object is unchanged.
This method is most useful when you don’t know if your object is a Series or DataFrame, but you do know it has just a single column. In that case you can safely call squeeze to ensure you have a Series.
- axis{0 or ‘index’, 1 or ‘columns’, None}, default None
A specific axis to squeeze. By default, all length-1 axes are squeezed.
- DataFrame, Series, or scalar
The projection after squeezing axis or all the axes.
Series.iloc : Integer-location based indexing for selecting scalars. DataFrame.iloc : Integer-location based indexing for selecting Series. Series.to_frame : Inverse of DataFrame.squeeze for a
single-column DataFrame.
>>> primes = pd.Series([2, 3, 5, 7])
Slicing might produce a Series with a single value:
>>> even_primes = primes[primes % 2 == 0] >>> even_primes 0 2 dtype: int64
>>> even_primes.squeeze() 2
Squeezing objects with more than one value in every axis does nothing:
>>> odd_primes = primes[primes % 2 == 1] >>> odd_primes 1 3 2 5 3 7 dtype: int64
>>> odd_primes.squeeze() 1 3 2 5 3 7 dtype: int64
Squeezing is even more effective when used with DataFrames.
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) >>> df a b 0 1 2 1 3 4
Slicing a single column will produce a DataFrame with the columns having only one value:
>>> df_a = df[['a']] >>> df_a a 0 1 1 3
So the columns can be squeezed down, resulting in a Series:
>>> df_a.squeeze('columns') 0 1 1 3 Name: a, dtype: int64
Slicing a single row from a single column will produce a single scalar DataFrame:
>>> df_0a = df.loc[df.index < 1, ['a']] >>> df_0a a 0 1
Squeezing the rows produces a single scalar Series:
>>> df_0a.squeeze('rows') a 1 Name: 0, dtype: int64
Squeezing all axes will project directly into a scalar:
>>> df_0a.squeeze() 1
-
stack
(level=- 1, dropna=True)¶ Stack the prescribed level(s) from columns to index.
Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe:
if the columns have a single level, the output is a Series;
if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame.
The new index levels are sorted.
- levelint, str, list, default -1
Level(s) to stack from the column axis onto the index axis, defined as one index or label, or a list of indices or labels.
- dropnabool, default True
Whether to drop rows in the resulting Frame/Series with missing values. Stacking a column level onto the index axis can create combinations of index and column values that are missing from the original dataframe. See Examples section.
- DataFrame or Series
Stacked dataframe or series.
- DataFrame.unstackUnstack prescribed level(s) from index axis
onto column axis.
- DataFrame.pivotReshape dataframe from long format to wide
format.
- DataFrame.pivot_tableCreate a spreadsheet-style pivot table
as a DataFrame.
The function is named by analogy with a collection of books being reorganized from being side by side on a horizontal position (the columns of the dataframe) to being stacked vertically on top of each other (in the index of the dataframe).
Single level columns
>>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]], ... index=['cat', 'dog'], ... columns=['weight', 'height'])
Stacking a dataframe with a single level column axis returns a Series:
>>> df_single_level_cols weight height cat 0 1 dog 2 3 >>> df_single_level_cols.stack() cat weight 0 height 1 dog weight 2 height 3 dtype: int64
Multi level columns: simple case
>>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('weight', 'pounds')]) >>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]], ... index=['cat', 'dog'], ... columns=multicol1)
Stacking a dataframe with a multi-level column axis:
>>> df_multi_level_cols1 weight kg pounds cat 1 2 dog 2 4 >>> df_multi_level_cols1.stack() weight cat kg 1 pounds 2 dog kg 2 pounds 4
Missing values
>>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('height', 'm')]) >>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]], ... index=['cat', 'dog'], ... columns=multicol2)
It is common to have missing values when stacking a dataframe with multi-level columns, as the stacked dataframe typically has more values than the original dataframe. Missing values are filled with NaNs:
>>> df_multi_level_cols2 weight height kg m cat 1.0 2.0 dog 3.0 4.0 >>> df_multi_level_cols2.stack() height weight cat kg NaN 1.0 m 2.0 NaN dog kg NaN 3.0 m 4.0 NaN
Prescribing the level(s) to be stacked
The first parameter controls which level or levels are stacked:
>>> df_multi_level_cols2.stack(0) kg m cat height NaN 2.0 weight 1.0 NaN dog height NaN 4.0 weight 3.0 NaN >>> df_multi_level_cols2.stack([0, 1]) cat height m 2.0 weight kg 1.0 dog height m 4.0 weight kg 3.0 dtype: float64
Dropping missing values
>>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]], ... index=['cat', 'dog'], ... columns=multicol2)
Note that rows where all values are missing are dropped by default but this behaviour can be controlled via the dropna keyword parameter:
>>> df_multi_level_cols3 weight height kg m cat NaN 1.0 dog 2.0 3.0 >>> df_multi_level_cols3.stack(dropna=False) height weight cat kg NaN NaN m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN >>> df_multi_level_cols3.stack(dropna=True) height weight cat m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN
-
std
(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)¶ Return sample standard deviation over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument
axis : {index (0), columns (1)} skipna : bool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- ddofint, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
- numeric_onlybool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
Series or DataFrame (if level specified)
-
property
style
¶ Returns a Styler object.
Contains methods for building a styled HTML representation of the DataFrame. a styled HTML representation fo the DataFrame.
io.formats.style.Styler
-
sub
(other, axis='columns', level=None, fill_value=None)¶ Get Subtraction of dataframe and other, element-wise (binary operator sub).
Equivalent to
dataframe - other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rsub.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
subtract
(other, axis='columns', level=None, fill_value=None)¶ Get Subtraction of dataframe and other, element-wise (binary operator sub).
Equivalent to
dataframe - other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rsub.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
sum
(axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs)¶ Return the sum of the values for the requested axis.
This is equivalent to the method
numpy.sum
.- axis{index (0), columns (1)}
Axis for the function to be applied on.
- skipnabool, default True
Exclude NA/null values when computing the result.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- numeric_onlybool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- min_countint, default 0
The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA.New in version 0.22.0: Added with the default being 0. This means the sum of an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.
- **kwargs
Additional keyword arguments to be passed to the function.
Series or DataFrame (if level specified)
Series.sum : Return the sum. Series.min : Return the minimum. Series.max : Return the maximum. Series.idxmin : Return the index of the minimum. Series.idxmax : Return the index of the maximum. DataFrame.sum : Return the sum over the requested axis. DataFrame.min : Return the minimum over the requested axis. DataFrame.max : Return the maximum over the requested axis. DataFrame.idxmin : Return the index of the minimum over the requested axis. DataFrame.idxmax : Return the index of the maximum over the requested axis.
>>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64
>>> s.sum() 14
Sum using level names, as well as indices.
>>> s.sum(level='blooded') blooded warm 6 cold 8 Name: legs, dtype: int64
>>> s.sum(level=0) blooded warm 6 cold 8 Name: legs, dtype: int64
By default, the sum of an empty or all-NA Series is
0
.>>> pd.Series([]).sum() # min_count=0 is the default 0.0
This can be controlled with the
min_count
parameter. For example, if you’d like the sum of an empty series to be NaN, passmin_count=1
.>>> pd.Series([]).sum(min_count=1) nan
Thanks to the
skipna
parameter,min_count
handles all-NA and empty series identically.>>> pd.Series([np.nan]).sum() 0.0
>>> pd.Series([np.nan]).sum(min_count=1) nan
-
swapaxes
(axis1, axis2, copy=True) → FrameOrSeries¶ Interchange axes and swap values axes appropriately.
y : same as input
-
swaplevel
(i=- 2, j=- 1, axis=0) → pandas.core.frame.DataFrame¶ Swap levels i and j in a MultiIndex on a particular axis.
- i, jint or str
Levels of the indices to be swapped. Can pass level name as string.
DataFrame
-
symmetric_difference
(second_geometry)¶ Constructs the geometry that is the union of two geometries minus the instersection of those geometries. The two input geometries must be the same shape type. Parameters:
- second_geometry
a second geometry
-
tail
(n: int = 5) → FrameOrSeries¶ Return the last n rows.
This function returns last n rows from the object based on position. It is useful for quickly verifying data, for example, after sorting or appending rows.
For negative values of n, this function returns all rows except the first n rows, equivalent to
df[n:]
.- nint, default 5
Number of rows to select.
- type of caller
The last n rows of the caller object.
DataFrame.head : The first n rows of the caller object.
>>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra
Viewing the last 5 lines
>>> df.tail() animal 4 monkey 5 parrot 6 shark 7 whale 8 zebra
Viewing the last n lines (three in this case)
>>> df.tail(3) animal 6 shark 7 whale 8 zebra
For negative values of n
>>> df.tail(-3) animal 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra
-
take
(indices, axis=0, is_copy: Optional[bool] = None, **kwargs) → FrameOrSeries¶ Return the elements in the given positional indices along an axis.
This means that we are not indexing according to actual values in the index attribute of the object. We are indexing according to the actual position of the element in the object.
- indicesarray-like
An array of ints indicating which positions to take.
- axis{0 or ‘index’, 1 or ‘columns’, None}, default 0
The axis on which to select elements.
0
means that we are selecting rows,1
means that we are selecting columns.- is_copybool
Before pandas 1.0,
is_copy=False
can be specified to ensure that the return value is an actual copy. Starting with pandas 1.0,take
always returns a copy, and the keyword is therefore deprecated.Deprecated since version 1.0.0.
- **kwargs
For compatibility with
numpy.take()
. Has no effect on the output.
- takensame type as caller
An array-like containing the elements taken from the object.
DataFrame.loc : Select a subset of a DataFrame by labels. DataFrame.iloc : Select a subset of a DataFrame by positions. numpy.take : Take elements from an array along an axis.
>>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey', 'mammal', np.nan)], ... columns=['name', 'class', 'max_speed'], ... index=[0, 2, 3, 1]) >>> df name class max_speed 0 falcon bird 389.0 2 parrot bird 24.0 3 lion mammal 80.5 1 monkey mammal NaN
Take elements at positions 0 and 3 along the axis 0 (default).
Note how the actual indices selected (0 and 1) do not correspond to our selected indices 0 and 3. That’s because we are selecting the 0th and 3rd rows, not rows whose indices equal 0 and 3.
>>> df.take([0, 3]) name class max_speed 0 falcon bird 389.0 1 monkey mammal NaN
Take elements at indices 1 and 2 along the axis 1 (column selection).
>>> df.take([1, 2], axis=1) class max_speed 0 bird 389.0 2 bird 24.0 3 mammal 80.5 1 mammal NaN
We may take elements using negative integers for positive indices, starting from the end of the object, just like with Python lists.
>>> df.take([-1, -2]) name class max_speed 1 monkey mammal NaN 3 lion mammal 80.5
-
to_clipboard
(excel: bool = True, sep: Optional[str] = None, **kwargs) → None¶ Copy object to the system clipboard.
Write a text representation of object to the system clipboard. This can be pasted into Excel, for example.
- excelbool, default True
Produce output in a csv format for easy pasting into excel.
True, use the provided separator for csv pasting.
False, write a string representation of the object to the clipboard.
- sepstr, default
'\t'
Field delimiter.
- **kwargs
These parameters will be passed to DataFrame.to_csv.
- DataFrame.to_csvWrite a DataFrame to a comma-separated values
(csv) file.
read_clipboard : Read text from clipboard and pass to read_table.
Requirements for your platform.
Linux : xclip, or xsel (with PyQt4 modules)
Windows : none
OS X : none
Copy the contents of a DataFrame to the clipboard.
>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C']) >>> df.to_clipboard(sep=',') ... # Wrote the following to the system clipboard: ... # ,A,B,C ... # 0,1,2,3 ... # 1,4,5,6
We can omit the the index by passing the keyword index and setting it to false.
>>> df.to_clipboard(sep=',', index=False) ... # Wrote the following to the system clipboard: ... # A,B,C ... # 1,2,3 ... # 4,5,6
-
to_csv
(path_or_buf: Optional[Union[str, pathlib.Path, IO[AnyStr]]] = None, sep: str = ',', na_rep: str = '', float_format: Optional[str] = None, columns: Optional[Sequence[collections.abc.Hashable]] = None, header: Union[bool, List[str]] = True, index: bool = True, index_label: Optional[Union[bool, str, Sequence[collections.abc.Hashable]]] = None, mode: str = 'w', encoding: Optional[str] = None, compression: Optional[Union[str, Mapping[str, str]]] = 'infer', quoting: Optional[int] = None, quotechar: str = '"', line_terminator: Optional[str] = None, chunksize: Optional[int] = None, date_format: Optional[str] = None, doublequote: bool = True, escapechar: Optional[str] = None, decimal: Optional[str] = '.') → Optional[str]¶ Write object to a comma-separated values (csv) file.
Changed in version 0.24.0: The order of arguments for Series was changed.
- path_or_bufstr or file handle, default None
File path or object, if None is provided the result is returned as a string. If a file object is passed it should be opened with newline=’’, disabling universal newlines.
Changed in version 0.24.0: Was previously named “path” for Series.
- sepstr, default ‘,’
String of length 1. Field delimiter for the output file.
- na_repstr, default ‘’
Missing data representation.
- float_formatstr, default None
Format string for floating point numbers.
- columnssequence, optional
Columns to write.
- headerbool or list of str, default True
Write out the column names. If a list of strings is given it is assumed to be aliases for the column names.
Changed in version 0.24.0: Previously defaulted to False for Series.
- indexbool, default True
Write row names (index).
- index_labelstr or sequence, or False, default None
Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the object uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R.
- modestr
Python write mode, default ‘w’.
- encodingstr, optional
A string representing the encoding to use in the output file, defaults to ‘utf-8’.
- compressionstr or dict, default ‘infer’
If str, represents compression mode. If dict, value at ‘method’ is the compression mode. Compression mode may be any of the following possible values: {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}. If compression mode is ‘infer’ and path_or_buf is path-like, then detect compression mode from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’ or ‘.xz’. (otherwise no compression). If dict given and mode is ‘zip’ or inferred as ‘zip’, other entries passed as additional compression options.
Changed in version 1.0.0: May now be a dict with key ‘method’ as compression mode and other entries as additional compression options if compression mode is ‘zip’.
- quotingoptional constant from csv module
Defaults to csv.QUOTE_MINIMAL. If you have set a float_format then floats are converted to strings and thus csv.QUOTE_NONNUMERIC will treat them as non-numeric.
- quotecharstr, default ‘"’
String of length 1. Character used to quote fields.
- line_terminatorstr, optional
The newline character or character sequence to use in the output file. Defaults to os.linesep, which depends on the OS in which this method is called (‘n’ for linux, ‘rn’ for Windows, i.e.).
Changed in version 0.24.0.
- chunksizeint or None
Rows to write at a time.
- date_formatstr, default None
Format string for datetime objects.
- doublequotebool, default True
Control quoting of quotechar inside a field.
- escapecharstr, default None
String of length 1. Character used to escape sep and quotechar when appropriate.
- decimalstr, default ‘.’
Character recognized as decimal separator. E.g. use ‘,’ for European data.
- None or str
If path_or_buf is None, returns the resulting csv format as a string. Otherwise returns None.
read_csv : Load a CSV file into a DataFrame. to_excel : Write DataFrame to an Excel file.
>>> df = pd.DataFrame({'name': ['Raphael', 'Donatello'], ... 'mask': ['red', 'purple'], ... 'weapon': ['sai', 'bo staff']}) >>> df.to_csv(index=False) 'name,mask,weapon\nRaphael,red,sai\nDonatello,purple,bo staff\n'
Create ‘out.zip’ containing ‘out.csv’
>>> compression_opts = dict(method='zip', ... archive_name='out.csv') >>> df.to_csv('out.zip', index=False, ... compression=compression_opts)
-
to_dict
(orient='dict', into=<class 'dict'>)¶ Convert the DataFrame to a dictionary.
The type of the key-value pairs can be customized with the parameters (see below).
- orientstr {‘dict’, ‘list’, ‘series’, ‘split’, ‘records’, ‘index’}
Determines the type of the values of the dictionary.
‘dict’ (default) : dict like {column -> {index -> value}}
‘list’ : dict like {column -> [values]}
‘series’ : dict like {column -> Series(values)}
‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]}
‘records’ : list like [{column -> value}, … , {column -> value}]
‘index’ : dict like {index -> {column -> value}}
Abbreviations are allowed. s indicates series and sp indicates split.
- intoclass, default dict
The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized.
New in version 0.21.0.
- dict, list or collections.abc.Mapping
Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the orient parameter.
DataFrame.from_dict: Create a DataFrame from a dictionary. DataFrame.to_json: Convert a DataFrame to JSON format.
>>> df = pd.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}}
You can specify the return orientation.
>>> df.to_dict('series') {'col1': row1 1 row2 2 Name: col1, dtype: int64, 'col2': row1 0.50 row2 0.75 Name: col2, dtype: float64}
>>> df.to_dict('split') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]}
>>> df.to_dict('records') [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}]
>>> df.to_dict('index') {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}}
You can also specify the mapping type.
>>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))])
If you want a defaultdict, you need to initialize it:
>>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})]
-
to_excel
(excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True, freeze_panes=None) → None¶ Write object to an Excel sheet.
To write a single object to an Excel .xlsx file it is only necessary to specify a target file name. To write to multiple sheets it is necessary to create an ExcelWriter object with a target file name, and specify a sheet in the file to write to.
Multiple sheets may be written to by specifying unique sheet_name. With all data written to the file it is necessary to save the changes. Note that creating an ExcelWriter object with a file name that already exists will result in the contents of the existing file being erased.
- excel_writerstr or ExcelWriter object
File path or existing ExcelWriter.
- sheet_namestr, default ‘Sheet1’
Name of sheet which will contain DataFrame.
- na_repstr, default ‘’
Missing data representation.
- float_formatstr, optional
Format string for floating point numbers. For example
float_format="%.2f"
will format 0.1234 to 0.12.- columnssequence or list of str, optional
Columns to write.
- headerbool or list of str, default True
Write out the column names. If a list of string is given it is assumed to be aliases for the column names.
- indexbool, default True
Write row names (index).
- index_labelstr or sequence, optional
Column label for index column(s) if desired. If not specified, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.
- startrowint, default 0
Upper left cell row to dump data frame.
- startcolint, default 0
Upper left cell column to dump data frame.
- enginestr, optional
Write engine to use, ‘openpyxl’ or ‘xlsxwriter’. You can also set this via the options
io.excel.xlsx.writer
,io.excel.xls.writer
, andio.excel.xlsm.writer
.- merge_cellsbool, default True
Write MultiIndex and Hierarchical Rows as merged cells.
- encodingstr, optional
Encoding of the resulting excel file. Only necessary for xlwt, other writers support unicode natively.
- inf_repstr, default ‘inf’
Representation for infinity (there is no native representation for infinity in Excel).
- verbosebool, default True
Display more information in the error logs.
- freeze_panestuple of int (length 2), optional
Specifies the one-based bottommost row and rightmost column that is to be frozen.
to_csv : Write DataFrame to a comma-separated values (csv) file. ExcelWriter : Class for writing DataFrame objects into excel sheets. read_excel : Read an Excel file into a pandas DataFrame. read_csv : Read a comma-separated values (csv) file into DataFrame.
For compatibility with
to_csv()
, to_excel serializes lists and dicts to strings before writing.Once a workbook has been saved it is not possible write further data without rewriting the whole workbook.
Create, write to and save a workbook:
>>> df1 = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) >>> df1.to_excel("output.xlsx")
To specify the sheet name:
>>> df1.to_excel("output.xlsx", ... sheet_name='Sheet_name_1')
If you wish to write to more than one sheet in the workbook, it is necessary to specify an ExcelWriter object:
>>> df2 = df1.copy() >>> with pd.ExcelWriter('output.xlsx') as writer: ... df1.to_excel(writer, sheet_name='Sheet_name_1') ... df2.to_excel(writer, sheet_name='Sheet_name_2')
ExcelWriter can also be used to append to an existing Excel file:
>>> with pd.ExcelWriter('output.xlsx', ... mode='a') as writer: ... df.to_excel(writer, sheet_name='Sheet_name_3')
To set the library that is used to write the Excel file, you can pass the engine keyword (the default engine is automatically chosen depending on the file extension):
>>> df1.to_excel('output1.xlsx', engine='xlsxwriter')
-
to_feather
(**kwargs) → None¶ Write out the binary feather-format for DataFrames.
- pathstr
String file path.
-
to_feature_collection
(name=None, drawing_info=None, extent=None, global_id_field=None)¶ converts a Spatial DataFrame to a Feature Collection
optional argument
Description
name
optional string. Name of the Feature Collection
drawing_info
Optional dictionary. This is the rendering information for a Feature Collection. Rendering information is a dictionary with the symbology, labelling and other properties defined. See: http://resources.arcgis.com/en/help/arcgis-rest-api/index.html#/Renderer_objects/02r30000019t000000/
extent
Optional dictionary. If desired, a custom extent can be provided to set where the map starts up when showing the data. The default is the full extent of the dataset in the Spatial DataFrame.
global_id_field
Optional string. The Global ID field of the dataset.
- Returns
FeatureCollection object
-
to_featureclass
(out_location, out_name, overwrite=True, skip_invalid=True)¶ converts a SpatialDataFrame to a feature class
Argument
Description
out_location
Required string. A save location workspace
out_name
Required string. The name of the feature class to save as
overwrite
Optional boolean. True means to erase and replace value, false means to append
skip_invalids
Optional boolean. If True, any bad rows will be ignored.
- Returns
string
-
to_featurelayer
(title, gis=None, tags=None)¶ publishes a spatial dataframe to a new feature layer
Argument
Description
title
Required string. The name of the service
gis
Optional GIS. The GIS connection object
tags
Optional string. A comma seperated list of descriptive words for the service
- Returns
FeatureLayer
-
to_featureset
()¶ Converts a spatial dataframe to a feature set object
-
to_gbq
(destination_table, project_id=None, chunksize=None, reauth=False, if_exists='fail', auth_local_webserver=False, table_schema=None, location=None, progress_bar=True, credentials=None) → None¶ Write a DataFrame to a Google BigQuery table.
This function requires the pandas-gbq package.
See the How to authenticate with Google BigQuery guide for authentication instructions.
- destination_tablestr
Name of table to be written, in the form
dataset.tablename
.- project_idstr, optional
Google BigQuery Account project ID. Optional when available from the environment.
- chunksizeint, optional
Number of rows to be inserted in each chunk from the dataframe. Set to
None
to load the whole dataframe at once.- reauthbool, default False
Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used.
- if_existsstr, default ‘fail’
Behavior when the destination table exists. Value can be one of:
'fail'
If table exists raise pandas_gbq.gbq.TableCreationError.
'replace'
If table exists, drop it, recreate it, and insert data.
'append'
If table exists, insert data. Create if does not exist.
- auth_local_webserverbool, default False
Use the local webserver flow instead of the console flow when getting user credentials.
New in version 0.2.0 of pandas-gbq.
- table_schemalist of dicts, optional
List of BigQuery table fields to which according DataFrame columns conform to, e.g.
[{'name': 'col1', 'type': 'STRING'},...]
. If schema is not provided, it will be generated according to dtypes of DataFrame columns. See BigQuery API documentation on available names of a field.New in version 0.3.1 of pandas-gbq.
- locationstr, optional
Location where the load job should run. See the BigQuery locations documentation for a list of available locations. The location must match that of the target dataset.
New in version 0.5.0 of pandas-gbq.
- progress_barbool, default True
Use the library tqdm to show the progress bar for the upload, chunk by chunk.
New in version 0.5.0 of pandas-gbq.
- credentialsgoogle.auth.credentials.Credentials, optional
Credentials for accessing Google APIs. Use this parameter to override default credentials, such as to use Compute Engine
google.auth.compute_engine.Credentials
or Service Accountgoogle.oauth2.service_account.Credentials
directly.New in version 0.8.0 of pandas-gbq.
New in version 0.24.0.
pandas_gbq.to_gbq : This function in the pandas-gbq library. read_gbq : Read a DataFrame from Google BigQuery.
-
to_hdf
(path_or_buf, key, **kwargs)¶ Write the contained data to an HDF5 file using HDFStore.
path_or_buf : the path (string) or HDFStore object key : string
indentifier for the group in the store
mode : optional, {‘a’, ‘w’, ‘r+’}, default ‘a’
'w'
Write; a new file is created (an existing file with the same name would be deleted).
'a'
Append; an existing file is opened for reading and writing, and if the file does not exist it is created.
'r+'
It is similar to
'a'
, but the file must already exist.
- format‘fixed(f)|table(t)’, default is ‘fixed’
- fixed(f)Fixed format
Fast writing/reading. Not-appendable, nor searchable
- table(t)Table format
Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data
- appendboolean, default False
For Table formats, append the input data to the existing
- data_columnslist of columns, or True, default None
List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See here.
Applicable only to format=’table’.
- complevelint, 1-9, default 0
If a complib is specified compression will be applied where possible
- complib{‘zlib’, ‘bzip2’, ‘lzo’, ‘blosc’, None}, default None
If complevel is > 0 apply compression to objects written in the store wherever possible
- fletcher32bool, default False
If applying compression use the fletcher32 checksum
- dropnaboolean, default False.
If true, ALL nan rows will not be written to store.
-
to_html
(buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal='.', bold_rows=True, classes=None, escape=True, notebook=False, border=None, table_id=None, render_links=False, encoding=None)¶ Render a DataFrame as an HTML table.
- bufstr, Path or StringIO-like, optional, default None
Buffer to write to. If None, the output is returned as a string.
- columnssequence, optional, default None
The subset of columns to write. Writes all columns by default.
- col_spacestr or int, optional
The minimum width of each column in CSS length units. An int is assumed to be px units.
New in version 0.25.0: Ability to use str.
- headerbool, optional
Whether to print column labels, default True.
- indexbool, optional, default True
Whether to print index (row) labels.
- na_repstr, optional, default ‘NaN’
String representation of NAN to use.
- formatterslist, tuple or dict of one-param. functions, optional
Formatter functions to apply to columns’ elements by position or name. The result of each function must be a unicode string. List/tuple must be of length equal to the number of columns.
- float_formatone-parameter function, optional, default None
Formatter function to apply to columns’ elements if they are floats. The result of this function must be a unicode string.
- sparsifybool, optional, default True
Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row.
- index_namesbool, optional, default True
Prints the names of the indexes.
- justifystr, default None
How to justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box. Valid values are
left
right
center
justify
justify-all
start
end
inherit
match-parent
initial
unset.
- max_rowsint, optional
Maximum number of rows to display in the console.
- min_rowsint, optional
The number of rows to display in the console in a truncated repr (when number of rows is above max_rows).
- max_colsint, optional
Maximum number of columns to display in the console.
- show_dimensionsbool, default False
Display DataFrame dimensions (number of rows by number of columns).
- decimalstr, default ‘.’
Character recognized as decimal separator, e.g. ‘,’ in Europe.
- bold_rowsbool, default True
Make the row labels bold in the output.
- classesstr or list or tuple, default None
CSS class(es) to apply to the resulting html table.
- escapebool, default True
Convert the characters <, >, and & to HTML-safe sequences.
- notebook{True, False}, default False
Whether the generated HTML is for IPython Notebook.
- borderint
A
border=border
attribute is included in the opening <table> tag. Defaultpd.options.display.html.border
.- encodingstr, default “utf-8”
Set character encoding.
New in version 1.0.
- table_idstr, optional
A css id is included in the opening <table> tag if specified.
New in version 0.23.0.
- render_linksbool, default False
Convert URLs to HTML links.
New in version 0.24.0.
- str or None
If buf is None, returns the result as a string. Otherwise returns None.
to_string : Convert DataFrame to a string.
-
to_json
(path_or_buf: Optional[Union[str, pathlib.Path, IO[AnyStr]]] = None, orient: Optional[str] = None, date_format: Optional[str] = None, double_precision: int = 10, force_ascii: bool = True, date_unit: str = 'ms', default_handler: Optional[Callable[Any, Union[str, int, float, List, Dict]]] = None, lines: bool = False, compression: Optional[str] = 'infer', index: bool = True, indent: Optional[int] = None) → Optional[str]¶ Convert the object to a JSON string.
Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.
- path_or_bufstr or file handle, optional
File path or object. If not specified, the result is returned as a string.
- orientstr
Indication of expected JSON string format.
Series:
default is ‘index’
allowed values are: {‘split’,’records’,’index’,’table’}.
DataFrame:
default is ‘columns’
allowed values are: {‘split’, ‘records’, ‘index’, ‘columns’, ‘values’, ‘table’}.
The format of the JSON string:
‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]}
‘records’ : list like [{column -> value}, … , {column -> value}]
‘index’ : dict like {index -> {column -> value}}
‘columns’ : dict like {column -> {index -> value}}
‘values’ : just the values array
‘table’ : dict like {‘schema’: {schema}, ‘data’: {data}}
Describing the data, where data component is like
orient='records'
.
Changed in version 0.20.0.
- date_format{None, ‘epoch’, ‘iso’}
Type of date conversion. ‘epoch’ = epoch milliseconds, ‘iso’ = ISO8601. The default depends on the orient. For
orient='table'
, the default is ‘iso’. For all other orients, the default is ‘epoch’.- double_precisionint, default 10
The number of decimal places to use when encoding floating point values.
- force_asciibool, default True
Force encoded string to be ASCII.
- date_unitstr, default ‘ms’ (milliseconds)
The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.
- default_handlercallable, default None
Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.
- linesbool, default False
If ‘orient’ is ‘records’ write out line delimited json format. Will throw ValueError if incorrect ‘orient’ since others are not list like.
compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}
A string representing the compression to use in the output file, only used when the first argument is a filename. By default, the compression is inferred from the filename.
New in version 0.21.0.
Changed in version 0.24.0: ‘infer’ option added and set to default
- indexbool, default True
Whether to include the index values in the JSON string. Not including the index (
index=False
) is only supported when orient is ‘split’ or ‘table’.New in version 0.23.0.
- indentint, optional
Length of whitespace used to indent each record.
New in version 1.0.0.
- None or str
If path_or_buf is None, returns the resulting json format as a string. Otherwise returns None.
read_json
The behavior of
indent=0
varies from the stdlib, which does not indent the output but does insert newlines. Currently,indent=0
and the defaultindent=None
are equivalent in pandas, though this may change in a future release.>>> df = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) >>> df.to_json(orient='split') '{"columns":["col 1","col 2"], "index":["row 1","row 2"], "data":[["a","b"],["c","d"]]}'
Encoding/decoding a Dataframe using
'records'
formatted JSON. Note that index labels are not preserved with this encoding.>>> df.to_json(orient='records') '[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]'
Encoding/decoding a Dataframe using
'index'
formatted JSON:>>> df.to_json(orient='index') '{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}'
Encoding/decoding a Dataframe using
'columns'
formatted JSON:>>> df.to_json(orient='columns') '{"col 1":{"row 1":"a","row 2":"c"},"col 2":{"row 1":"b","row 2":"d"}}'
Encoding/decoding a Dataframe using
'values'
formatted JSON:>>> df.to_json(orient='values') '[["a","b"],["c","d"]]'
Encoding with Table Schema
>>> df.to_json(orient='table') '{"schema": {"fields": [{"name": "index", "type": "string"}, {"name": "col 1", "type": "string"}, {"name": "col 2", "type": "string"}], "primaryKey": "index", "pandas_version": "0.20.0"}, "data": [{"index": "row 1", "col 1": "a", "col 2": "b"}, {"index": "row 2", "col 1": "c", "col 2": "d"}]}'
-
to_latex
(buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=False, column_format=None, longtable=None, escape=None, encoding=None, decimal='.', multicolumn=None, multicolumn_format=None, multirow=None, caption=None, label=None)¶ Render object to a LaTeX tabular, longtable, or nested table/tabular.
Requires
\usepackage{booktabs}
. The output can be copy/pasted into a main LaTeX document or read from an external file with\input{table.tex}
.Changed in version 0.20.2: Added to Series.
Changed in version 1.0.0: Added caption and label arguments.
- bufstr, Path or StringIO-like, optional, default None
Buffer to write to. If None, the output is returned as a string.
- columnslist of label, optional
The subset of columns to write. Writes all columns by default.
- col_spaceint, optional
The minimum width of each column.
- headerbool or list of str, default True
Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names.
- indexbool, default True
Write row names (index).
- na_repstr, default ‘NaN’
Missing data representation.
- formatterslist of functions or dict of {str: function}, optional
Formatter functions to apply to columns’ elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns.
- float_formatone-parameter function or str, optional, default None
Formatter for floating point numbers. For example
float_format="%.2f"
andfloat_format="{:0.2f}".format
will both result in 0.1234 being formatted as 0.12.- sparsifybool, optional
Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. By default, the value will be read from the config module.
- index_namesbool, default True
Prints the names of the indexes.
- bold_rowsbool, default False
Make the row labels bold in the output.
- column_formatstr, optional
The columns format as specified in LaTeX table format e.g. ‘rcl’ for 3 columns. By default, ‘l’ will be used for all columns except columns of numbers, which default to ‘r’.
- longtablebool, optional
By default, the value will be read from the pandas config module. Use a longtable environment instead of tabular. Requires adding a usepackage{longtable} to your LaTeX preamble.
- escapebool, optional
By default, the value will be read from the pandas config module. When set to False prevents from escaping latex special characters in column names.
- encodingstr, optional
A string representing the encoding to use in the output file, defaults to ‘utf-8’.
- decimalstr, default ‘.’
Character recognized as decimal separator, e.g. ‘,’ in Europe.
- multicolumnbool, default True
Use multicolumn to enhance MultiIndex columns. The default will be read from the config module.
- multicolumn_formatstr, default ‘l’
The alignment for multicolumns, similar to column_format The default will be read from the config module.
- multirowbool, default False
Use multirow to enhance MultiIndex rows. Requires adding a usepackage{multirow} to your LaTeX preamble. Will print centered labels (instead of top-aligned) across the contained rows, separating groups via clines. The default will be read from the pandas config module.
- captionstr, optional
The LaTeX caption to be placed inside
\caption{}
in the output.New in version 1.0.0.
- labelstr, optional
The LaTeX label to be placed inside
\label{}
in the output. This is used with\ref{}
in the main.tex
file.New in version 1.0.0.
- str or None
If buf is None, returns the result as a string. Otherwise returns None.
- DataFrame.to_stringRender a DataFrame to a console-friendly
tabular output.
DataFrame.to_html : Render a DataFrame as an HTML table.
>>> df = pd.DataFrame({'name': ['Raphael', 'Donatello'], ... 'mask': ['red', 'purple'], ... 'weapon': ['sai', 'bo staff']}) >>> print(df.to_latex(index=False)) \begin{tabular}{lll} \toprule name & mask & weapon \\ \midrule Raphael & red & sai \\ Donatello & purple & bo staff \\ \bottomrule \end{tabular}
-
to_markdown
(buf: Optional[IO[str]] = None, mode: Optional[str] = None, **kwargs) → Optional[str]¶ Print DataFrame in Markdown-friendly format.
New in version 1.0.0.
- bufwritable buffer, defaults to sys.stdout
Where to send the output. By default, the output is printed to sys.stdout. Pass a writable buffer if you need to further process the output.
- modestr, optional
Mode in which file is opened.
- **kwargs
These parameters will be passed to tabulate.
- str
DataFrame in Markdown-friendly format.
>>> df = pd.DataFrame( ... data={"animal_1": ["elk", "pig"], "animal_2": ["dog", "quetzal"]} ... ) >>> print(df.to_markdown()) | | animal_1 | animal_2 | |---:|:-----------|:-----------| | 0 | elk | dog | | 1 | pig | quetzal |
-
to_numpy
(dtype=None, copy=False) → numpy.ndarray¶ Convert the DataFrame to a NumPy array.
New in version 0.24.0.
By default, the dtype of the returned array will be the common NumPy dtype of all types in the DataFrame. For example, if the dtypes are
float16
andfloat32
, the results dtype will befloat32
. This may require copying data and coercing values, which may be expensive.- dtypestr or numpy.dtype, optional
The dtype to pass to
numpy.asarray()
.- copybool, default False
Whether to ensure that the returned value is a not a view on another array. Note that
copy=False
does not ensure thatto_numpy()
is no-copy. Rather,copy=True
ensure that a copy is made, even if not strictly necessary.
numpy.ndarray
Series.to_numpy : Similar method for Series.
>>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]])
With heterogeneous data, the lowest common type will have to be used.
>>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}) >>> df.to_numpy() array([[1. , 3. ], [2. , 4.5]])
For a mix of numeric and non-numeric types, the output array will have object dtype.
>>> df['C'] = pd.date_range('2000', periods=2) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object)
-
to_parquet
(**kwargs) → None¶ Write a DataFrame to the binary parquet format.
New in version 0.21.0.
This function writes the dataframe as a parquet file. You can choose different parquet backends, and have the option of compression. See the user guide for more details.
- pathstr
File path or Root Directory path. Will be used as Root Directory path while writing a partitioned dataset.
Changed in version 1.0.0.
Previously this was “fname”
- engine{‘auto’, ‘pyarrow’, ‘fastparquet’}, default ‘auto’
Parquet library to use. If ‘auto’, then the option
io.parquet.engine
is used. The defaultio.parquet.engine
behavior is to try ‘pyarrow’, falling back to ‘fastparquet’ if ‘pyarrow’ is unavailable.- compression{‘snappy’, ‘gzip’, ‘brotli’, None}, default ‘snappy’
Name of the compression to use. Use
None
for no compression.- indexbool, default None
If
True
, include the dataframe’s index(es) in the file output. IfFalse
, they will not be written to the file. IfNone
, similar toTrue
the dataframe’s index(es) will be saved. However, instead of being saved as values, the RangeIndex will be stored as a range in the metadata so it doesn’t require much space and is faster. Other indexes will be included as columns in the file output.New in version 0.24.0.
- partition_colslist, optional, default None
Column names by which to partition the dataset. Columns are partitioned in the order they are given.
New in version 0.24.0.
- **kwargs
Additional arguments passed to the parquet library. See pandas io for more details.
read_parquet : Read a parquet file. DataFrame.to_csv : Write a csv file. DataFrame.to_sql : Write to a sql table. DataFrame.to_hdf : Write to hdf.
This function requires either the fastparquet or pyarrow library.
>>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]}) >>> df.to_parquet('df.parquet.gzip', ... compression='gzip') >>> pd.read_parquet('df.parquet.gzip') col1 col2 0 1 3 1 2 4
-
to_period
(freq=None, axis=0, copy=True) → pandas.core.frame.DataFrame¶ Convert DataFrame from DatetimeIndex to PeriodIndex.
Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed).
- freqstr, default
Frequency of the PeriodIndex.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis to convert (the index by default).
- copybool, default True
If False then underlying input data is not copied.
TimeSeries with PeriodIndex
-
to_pickle
(path, compression: Optional[str] = 'infer', protocol: int = 4) → None¶ Pickle (serialize) object to file.
- pathstr
File path where the pickled object will be stored.
- compression{‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’
A string representing the compression to use in the output file. By default, infers from the file extension in specified path.
- protocolint
Int which indicates which protocol should be used by the pickler, default HIGHEST_PROTOCOL (see [1]_ paragraph 12.1.2). The possible values are 0, 1, 2, 3, 4. A negative value for the protocol parameter is equivalent to setting its value to HIGHEST_PROTOCOL.
New in version 0.21.0..
read_pickle : Load pickled pandas object (or any object) from file. DataFrame.to_hdf : Write DataFrame to an HDF5 file. DataFrame.to_sql : Write DataFrame to a SQL database. DataFrame.to_parquet : Write a DataFrame to the binary parquet format.
>>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)}) >>> original_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> original_df.to_pickle("./dummy.pkl")
>>> unpickled_df = pd.read_pickle("./dummy.pkl") >>> unpickled_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9
>>> import os >>> os.remove("./dummy.pkl")
-
to_records
(index=True, column_dtypes=None, index_dtypes=None) → numpy.recarray¶ Convert DataFrame to a NumPy record array.
Index will be included as the first field of the record array if requested.
- indexbool, default True
Include index in resulting record array, stored in ‘index’ field or using the index label, if set.
- column_dtypesstr, type, dict, default None
New in version 0.24.0.
If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types.
- index_dtypesstr, type, dict, default None
New in version 0.24.0.
If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types.
This mapping is applied only if index=True.
- numpy.recarray
NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries.
- DataFrame.from_records: Convert structured or record ndarray
to DataFrame.
- numpy.recarray: An ndarray that allows field access using
attributes, analogous to typed columns in a spreadsheet.
>>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')])
If the DataFrame index has no label then the recarray field name is set to ‘index’. If the index has a label then this is used as the field name:
>>> df.index = df.index.rename("I") >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')])
The index can be excluded from the record array:
>>> df.to_records(index=False) rec.array([(1, 0.5 ), (2, 0.75)], dtype=[('A', '<i8'), ('B', '<f8')])
Data types can be specified for the columns:
>>> df.to_records(column_dtypes={"A": "int32"}) rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')])
As well as for the index:
>>> df.to_records(index_dtypes="<S2") rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')])
>>> index_dtypes = f"<S{df.index.str.len().max()}" >>> df.to_records(index_dtypes=index_dtypes) rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')])
-
to_sql
(name: str, con, schema=None, if_exists: str = 'fail', index: bool = True, index_label=None, chunksize=None, dtype=None, method=None) → None¶ Write records stored in a DataFrame to a SQL database.
Databases supported by SQLAlchemy [1]_ are supported. Tables can be newly created, appended to, or overwritten.
- namestr
Name of SQL table.
- consqlalchemy.engine.Engine or sqlite3.Connection
Using SQLAlchemy makes it possible to use any DB supported by that library. Legacy support is provided for sqlite3.Connection objects. The user is responsible for engine disposal and connection closure for the SQLAlchemy connectable See here
- schemastr, optional
Specify the schema (if database flavor supports this). If None, use default schema.
- if_exists{‘fail’, ‘replace’, ‘append’}, default ‘fail’
How to behave if the table already exists.
fail: Raise a ValueError.
replace: Drop the table before inserting new values.
append: Insert new values to the existing table.
- indexbool, default True
Write DataFrame index as a column. Uses index_label as the column name in the table.
- index_labelstr or sequence, default None
Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.
- chunksizeint, optional
Specify the number of rows in each batch to be written at a time. By default, all rows will be written at once.
- dtypedict or scalar, optional
Specifying the datatype for columns. If a dictionary is used, the keys should be the column names and the values should be the SQLAlchemy types or strings for the sqlite3 legacy mode. If a scalar is provided, it will be applied to all columns.
- method{None, ‘multi’, callable}, optional
Controls the SQL insertion clause used:
None : Uses standard SQL
INSERT
clause (one per row).‘multi’: Pass multiple values in a single
INSERT
clause.callable with signature
(pd_table, conn, keys, data_iter)
.
Details and a sample callable implementation can be found in the section insert method.
New in version 0.24.0.
- ValueError
When the table already exists and if_exists is ‘fail’ (the default).
read_sql : Read a DataFrame from a table.
Timezone aware datetime columns will be written as
Timestamp with timezone
type with SQLAlchemy if supported by the database. Otherwise, the datetimes will be stored as timezone unaware timestamps local to the original timezone.New in version 0.24.0.
Create an in-memory SQLite database.
>>> from sqlalchemy import create_engine >>> engine = create_engine('sqlite://', echo=False)
Create a table from scratch with 3 rows.
>>> df = pd.DataFrame({'name' : ['User 1', 'User 2', 'User 3']}) >>> df name 0 User 1 1 User 2 2 User 3
>>> df.to_sql('users', con=engine) >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 1'), (1, 'User 2'), (2, 'User 3')]
>>> df1 = pd.DataFrame({'name' : ['User 4', 'User 5']}) >>> df1.to_sql('users', con=engine, if_exists='append') >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 1'), (1, 'User 2'), (2, 'User 3'), (0, 'User 4'), (1, 'User 5')]
Overwrite the table with just
df1
.>>> df1.to_sql('users', con=engine, if_exists='replace', ... index_label='id') >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 4'), (1, 'User 5')]
Specify the dtype (especially useful for integers with missing values). Notice that while pandas is forced to store the data as floating point, the database supports nullable integers. When fetching the data with Python, we get back integer scalars.
>>> df = pd.DataFrame({"A": [1, None, 2]}) >>> df A 0 1.0 1 NaN 2 2.0
>>> from sqlalchemy.types import Integer >>> df.to_sql('integers', con=engine, index=False, ... dtype={"A": Integer()})
>>> engine.execute("SELECT * FROM integers").fetchall() [(1,), (None,), (2,)]
-
to_stata
(**kwargs)¶ Export DataFrame object to Stata dta format.
Writes the DataFrame to a Stata dataset file. “dta” files contain a Stata dataset.
- pathstr, buffer or path object
String, path object (pathlib.Path or py._path.local.LocalPath) or object implementing a binary write() function. If using a buffer then the buffer will not be automatically closed after the file data has been written.
Changed in version 1.0.0.
Previously this was “fname”
- convert_datesdict
Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are ‘tc’, ‘td’, ‘tm’, ‘tw’, ‘th’, ‘tq’, ‘ty’. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to ‘tc’. Raises NotImplementedError if a datetime column has timezone information.
- write_indexbool
Write the index to Stata dataset.
- byteorderstr
Can be “>”, “<”, “little”, or “big”. default is sys.byteorder.
- time_stampdatetime
A datetime to use as file creation date. Default is the current time.
- data_labelstr, optional
A label for the data set. Must be 80 characters or smaller.
- variable_labelsdict
Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller.
- version{114, 117, 118, 119, None}, default 114
Version to use in the output dta file. Set to None to let pandas decide between 118 or 119 formats depending on the number of columns in the frame. Version 114 can be read by Stata 10 and later. Version 117 can be read by Stata 13 or later. Version 118 is supported in Stata 14 and later. Version 119 is supported in Stata 15 and later. Version 114 limits string variables to 244 characters or fewer while versions 117 and later allow strings with lengths up to 2,000,000 characters. Versions 118 and 119 support Unicode characters, and version 119 supports more than 32,767 variables.
New in version 0.23.0.
Changed in version 1.0.0: Added support for formats 118 and 119.
- convert_strllist, optional
List of column names to convert to string columns to Stata StrL format. Only available if version is 117. Storing strings in the StrL format can produce smaller dta files if strings have more than 8 characters and values are repeated.
New in version 0.23.0.
- NotImplementedError
If datetimes contain timezone information
Column dtype is not representable in Stata
- ValueError
Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime
Column listed in convert_dates is not in DataFrame
Categorical label contains more than 32,000 characters
read_stata : Import Stata data files. io.stata.StataWriter : Low-level writer for Stata data files. io.stata.StataWriter117 : Low-level writer for version 117 files.
>>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}) >>> df.to_stata('animals.dta')
-
to_string
(buf: Optional[Union[str, pathlib.Path, IO[AnyStr]]] = None, columns: Optional[Sequence[str]] = None, col_space: Optional[int] = None, header: Union[bool, Sequence[str]] = True, index: bool = True, na_rep: str = 'NaN', formatters: Optional[Union[List[Callable], Tuple[Callable, …], Mapping[Union[str, int], Callable]]] = None, float_format: Optional[Union[str, Callable, EngFormatter]] = None, sparsify: Optional[bool] = None, index_names: bool = True, justify: Optional[str] = None, max_rows: Optional[int] = None, min_rows: Optional[int] = None, max_cols: Optional[int] = None, show_dimensions: bool = False, decimal: str = '.', line_width: Optional[int] = None, max_colwidth: Optional[int] = None, encoding: Optional[str] = None) → Optional[str]¶ Render a DataFrame to a console-friendly tabular output.
- bufstr, Path or StringIO-like, optional, default None
Buffer to write to. If None, the output is returned as a string.
- columnssequence, optional, default None
The subset of columns to write. Writes all columns by default.
- col_spaceint, optional
The minimum width of each column.
- headerbool or sequence, optional
Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names.
- indexbool, optional, default True
Whether to print index (row) labels.
- na_repstr, optional, default ‘NaN’
String representation of NAN to use.
- formatterslist, tuple or dict of one-param. functions, optional
Formatter functions to apply to columns’ elements by position or name. The result of each function must be a unicode string. List/tuple must be of length equal to the number of columns.
- float_formatone-parameter function, optional, default None
Formatter function to apply to columns’ elements if they are floats. The result of this function must be a unicode string.
- sparsifybool, optional, default True
Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row.
- index_namesbool, optional, default True
Prints the names of the indexes.
- justifystr, default None
How to justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box. Valid values are
left
right
center
justify
justify-all
start
end
inherit
match-parent
initial
unset.
- max_rowsint, optional
Maximum number of rows to display in the console.
- min_rowsint, optional
The number of rows to display in the console in a truncated repr (when number of rows is above max_rows).
- max_colsint, optional
Maximum number of columns to display in the console.
- show_dimensionsbool, default False
Display DataFrame dimensions (number of rows by number of columns).
- decimalstr, default ‘.’
Character recognized as decimal separator, e.g. ‘,’ in Europe.
- line_widthint, optional
Width to wrap a line in characters.
- max_colwidthint, optional
Max width to truncate each column in characters. By default, no limit.
New in version 1.0.0.
- encodingstr, default “utf-8”
Set character encoding.
New in version 1.0.
- str or None
If buf is None, returns the result as a string. Otherwise returns None.
to_html : Convert DataFrame to HTML.
>>> d = {'col1': [1, 2, 3], 'col2': [4, 5, 6]} >>> df = pd.DataFrame(d) >>> print(df.to_string()) col1 col2 0 1 4 1 2 5 2 3 6
-
to_timestamp
(freq=None, how='start', axis=0, copy=True) → pandas.core.frame.DataFrame¶ Cast to DatetimeIndex of timestamps, at beginning of period.
- freqstr, default frequency of PeriodIndex
Desired frequency.
- how{‘s’, ‘e’, ‘start’, ‘end’}
Convention for converting period to timestamp; start of period vs. end.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis to convert (the index by default).
- copybool, default True
If False then underlying input data is not copied.
DataFrame with DatetimeIndex
-
to_xarray
()¶ Return an xarray object from the pandas object.
- xarray.DataArray or xarray.Dataset
Data in the pandas structure converted to Dataset if the object is a DataFrame, or a DataArray if the object is a Series.
DataFrame.to_hdf : Write DataFrame to an HDF5 file. DataFrame.to_parquet : Write a DataFrame to the binary parquet format.
See the xarray docs
>>> df = pd.DataFrame([('falcon', 'bird', 389.0, 2), ... ('parrot', 'bird', 24.0, 2), ... ('lion', 'mammal', 80.5, 4), ... ('monkey', 'mammal', np.nan, 4)], ... columns=['name', 'class', 'max_speed', ... 'num_legs']) >>> df name class max_speed num_legs 0 falcon bird 389.0 2 1 parrot bird 24.0 2 2 lion mammal 80.5 4 3 monkey mammal NaN 4
>>> df.to_xarray() <xarray.Dataset> Dimensions: (index: 4) Coordinates: * index (index) int64 0 1 2 3 Data variables: name (index) object 'falcon' 'parrot' 'lion' 'monkey' class (index) object 'bird' 'bird' 'mammal' 'mammal' max_speed (index) float64 389.0 24.0 80.5 nan num_legs (index) int64 2 2 4 4
>>> df['max_speed'].to_xarray() <xarray.DataArray 'max_speed' (index: 4)> array([389. , 24. , 80.5, nan]) Coordinates: * index (index) int64 0 1 2 3
>>> dates = pd.to_datetime(['2018-01-01', '2018-01-01', ... '2018-01-02', '2018-01-02']) >>> df_multiindex = pd.DataFrame({'date': dates, ... 'animal': ['falcon', 'parrot', ... 'falcon', 'parrot'], ... 'speed': [350, 18, 361, 15]}) >>> df_multiindex = df_multiindex.set_index(['date', 'animal'])
>>> df_multiindex speed date animal 2018-01-01 falcon 350 parrot 18 2018-01-02 falcon 361 parrot 15
>>> df_multiindex.to_xarray() <xarray.Dataset> Dimensions: (animal: 2, date: 2) Coordinates: * date (date) datetime64[ns] 2018-01-01 2018-01-02 * animal (animal) object 'falcon' 'parrot' Data variables: speed (date, animal) int64 350 18 361 15
-
touches
(second_geometry)¶ Indicates if the boundaries of the geometries intersect.
- Paramters:
- second_geometry
a second geometry
-
transform
(func, axis=0, *args, **kwargs) → pandas.core.frame.DataFrame¶ Call
func
on self producing a DataFrame with transformed values.Produced DataFrame will have same axis length as self.
- funcfunction, str, list or dict
Function to use for transforming the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply.
Accepted combinations are:
function
string function name
list of functions and/or function names, e.g.
[np.exp. 'sqrt']
dict of axis labels -> functions, function names or list of such.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
If 0 or ‘index’: apply function to each column. If 1 or ‘columns’: apply function to each row.
- *args
Positional arguments to pass to func.
- **kwargs
Keyword arguments to pass to func.
- DataFrame
A DataFrame that must have the same length as self.
ValueError : If the returned DataFrame has a different length than self.
DataFrame.agg : Only perform aggregating type operations. DataFrame.apply : Invoke function on a DataFrame.
>>> df = pd.DataFrame({'A': range(3), 'B': range(1, 4)}) >>> df A B 0 0 1 1 1 2 2 2 3 >>> df.transform(lambda x: x + 1) A B 0 1 2 1 2 3 2 3 4
Even though the resulting DataFrame must have the same length as the input DataFrame, it is possible to provide several input functions:
>>> s = pd.Series(range(3)) >>> s 0 0 1 1 2 2 dtype: int64 >>> s.transform([np.sqrt, np.exp]) sqrt exp 0 0.000000 1.000000 1 1.000000 2.718282 2 1.414214 7.389056
-
transpose
(*args, copy: bool = False) → pandas.core.frame.DataFrame¶ Transpose index and columns.
Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property
T
is an accessor to the methodtranspose()
.- *argstuple, optional
Accepted for compatibility with NumPy.
- copybool, default False
Whether to copy the data after transposing, even for DataFrames with a single dtype.
Note that a copy is always required for mixed dtype DataFrames, or for DataFrames with any extension types.
- DataFrame
The transposed DataFrame.
numpy.transpose : Permute the dimensions of a given array.
Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the object dtype. In such a case, a copy of the data is always made.
Square DataFrame with homogeneous dtype
>>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = pd.DataFrame(data=d1) >>> df1 col1 col2 0 1 3 1 2 4
>>> df1_transposed = df1.T # or df1.transpose() >>> df1_transposed 0 1 col1 1 2 col2 3 4
When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype:
>>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes 0 int64 1 int64 dtype: object
Non-square DataFrame with mixed dtypes
>>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob 8.0 True 0
>>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8 employed False True kids 0 0
When the DataFrame has mixed dtypes, we get a transposed DataFrame with the object dtype:
>>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype: object
-
property
true_centroid
¶ The center of gravity for a feature.
-
truediv
(other, axis='columns', level=None, fill_value=None)¶ Get Floating division of dataframe and other, element-wise (binary operator truediv).
Equivalent to
dataframe / other
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rtruediv.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- DataFrame
Result of the arithmetic operation.
DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power.
Mismatched indices will be unioned together.
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
-
truncate
(before=None, after=None, axis=None, copy: bool = True) → FrameOrSeries¶ Truncate a Series or DataFrame before and after some index value.
This is a useful shorthand for boolean indexing based on index values above or below certain thresholds.
- beforedate, str, int
Truncate all rows before this index value.
- afterdate, str, int
Truncate all rows after this index value.
- axis{0 or ‘index’, 1 or ‘columns’}, optional
Axis to truncate. Truncates the index (rows) by default.
- copybool, default is True,
Return a copy of the truncated section.
- type of caller
The truncated Series or DataFrame.
DataFrame.loc : Select a subset of a DataFrame by label. DataFrame.iloc : Select a subset of a DataFrame by position.
If the index being truncated contains only datetime values, before and after may be specified as strings instead of Timestamps.
>>> df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'], ... 'B': ['f', 'g', 'h', 'i', 'j'], ... 'C': ['k', 'l', 'm', 'n', 'o']}, ... index=[1, 2, 3, 4, 5]) >>> df A B C 1 a f k 2 b g l 3 c h m 4 d i n 5 e j o
>>> df.truncate(before=2, after=4) A B C 2 b g l 3 c h m 4 d i n
The columns of a DataFrame can be truncated.
>>> df.truncate(before="A", after="B", axis="columns") A B 1 a f 2 b g 3 c h 4 d i 5 e j
For Series, only rows can be truncated.
>>> df['A'].truncate(before=2, after=4) 2 b 3 c 4 d Name: A, dtype: object
The index values in
truncate
can be datetimes or string dates.>>> dates = pd.date_range('2016-01-01', '2016-02-01', freq='s') >>> df = pd.DataFrame(index=dates, data={'A': 1}) >>> df.tail() A 2016-01-31 23:59:56 1 2016-01-31 23:59:57 1 2016-01-31 23:59:58 1 2016-01-31 23:59:59 1 2016-02-01 00:00:00 1
>>> df.truncate(before=pd.Timestamp('2016-01-05'), ... after=pd.Timestamp('2016-01-10')).tail() A 2016-01-09 23:59:56 1 2016-01-09 23:59:57 1 2016-01-09 23:59:58 1 2016-01-09 23:59:59 1 2016-01-10 00:00:00 1
Because the index is a DatetimeIndex containing only dates, we can specify before and after as strings. They will be coerced to Timestamps before truncation.
>>> df.truncate('2016-01-05', '2016-01-10').tail() A 2016-01-09 23:59:56 1 2016-01-09 23:59:57 1 2016-01-09 23:59:58 1 2016-01-09 23:59:59 1 2016-01-10 00:00:00 1
Note that
truncate
assumes a 0 value for any unspecified time component (midnight). This differs from partial string slicing, which returns any partially matching dates.>>> df.loc['2016-01-05':'2016-01-10', :].tail() A 2016-01-10 23:59:55 1 2016-01-10 23:59:56 1 2016-01-10 23:59:57 1 2016-01-10 23:59:58 1 2016-01-10 23:59:59 1
-
tshift
(periods: int = 1, freq=None, axis=0) → FrameOrSeries¶ Shift the time index, using the index’s frequency if available.
- periodsint
Number of periods to move, can be positive or negative.
- freqDateOffset, timedelta, or str, default None
Increment to use from the tseries module or time rule expressed as a string (e.g. ‘EOM’).
- axis{0 or ‘index’, 1 or ‘columns’, None}, default 0
Corresponds to the axis that contains the Index.
shifted : Series/DataFrame
If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown
-
tz_convert
(tz, axis=0, level=None, copy: bool = True) → FrameOrSeries¶ Convert tz-aware axis to target time zone.
tz : str or tzinfo object axis : the axis to convert level : int, str, default None
If axis is a MultiIndex, convert a specific level. Otherwise must be None.
- copybool, default True
Also make a copy of the underlying data.
- %(klass)s
Object with time zone converted axis.
- TypeError
If the axis is tz-naive.
-
tz_localize
(tz, axis=0, level=None, copy: bool = True, ambiguous='raise', nonexistent: str = 'raise') → FrameOrSeries¶ Localize tz-naive index of a Series or DataFrame to target time zone.
This operation localizes the Index. To localize the values in a timezone-naive Series, use
Series.dt.tz_localize()
.tz : str or tzinfo axis : the axis to localize level : int, str, default None
If axis ia a MultiIndex, localize a specific level. Otherwise must be None.
- copybool, default True
Also make a copy of the underlying data.
- ambiguous‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
When clocks moved backward due to DST, ambiguous times may arise. For example in Central European Time (UTC+01), when going from 03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC and at 01:30:00 UTC. In such a situation, the ambiguous parameter dictates how ambiguous times should be handled.
‘infer’ will attempt to infer fall dst-transition hours based on order
bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times)
‘NaT’ will return NaT where there are ambiguous times
‘raise’ will raise an AmbiguousTimeError if there are ambiguous times.
- nonexistentstr, default ‘raise’
A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. Valid values are:
‘shift_forward’ will shift the nonexistent time forward to the closest existing time
‘shift_backward’ will shift the nonexistent time backward to the closest existing time
‘NaT’ will return NaT where there are nonexistent times
timedelta objects will shift nonexistent times by the timedelta
‘raise’ will raise an NonExistentTimeError if there are nonexistent times.
New in version 0.24.0.
- Series or DataFrame
Same type as the input.
- TypeError
If the TimeSeries is tz-aware and tz is not None.
Localize local times:
>>> s = pd.Series([1], ... index=pd.DatetimeIndex(['2018-09-15 01:30:00'])) >>> s.tz_localize('CET') 2018-09-15 01:30:00+02:00 1 dtype: int64
Be careful with DST changes. When there is sequential data, pandas can infer the DST time:
>>> s = pd.Series(range(7), ... index=pd.DatetimeIndex(['2018-10-28 01:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 03:00:00', ... '2018-10-28 03:30:00'])) >>> s.tz_localize('CET', ambiguous='infer') 2018-10-28 01:30:00+02:00 0 2018-10-28 02:00:00+02:00 1 2018-10-28 02:30:00+02:00 2 2018-10-28 02:00:00+01:00 3 2018-10-28 02:30:00+01:00 4 2018-10-28 03:00:00+01:00 5 2018-10-28 03:30:00+01:00 6 dtype: int64
In some cases, inferring the DST is impossible. In such cases, you can pass an ndarray to the ambiguous parameter to set the DST explicitly
>>> s = pd.Series(range(3), ... index=pd.DatetimeIndex(['2018-10-28 01:20:00', ... '2018-10-28 02:36:00', ... '2018-10-28 03:46:00'])) >>> s.tz_localize('CET', ambiguous=np.array([True, True, False])) 2018-10-28 01:20:00+02:00 0 2018-10-28 02:36:00+02:00 1 2018-10-28 03:46:00+01:00 2 dtype: int64
If the DST transition causes nonexistent times, you can shift these dates forward or backwards with a timedelta object or ‘shift_forward’ or ‘shift_backwards’. >>> s = pd.Series(range(2), … index=pd.DatetimeIndex([‘2015-03-29 02:30:00’, … ‘2015-03-29 03:30:00’])) >>> s.tz_localize(‘Europe/Warsaw’, nonexistent=’shift_forward’) 2015-03-29 03:00:00+02:00 0 2015-03-29 03:30:00+02:00 1 dtype: int64 >>> s.tz_localize(‘Europe/Warsaw’, nonexistent=’shift_backward’) 2015-03-29 01:59:59.999999999+01:00 0 2015-03-29 03:30:00+02:00 1 dtype: int64 >>> s.tz_localize(‘Europe/Warsaw’, nonexistent=pd.Timedelta(‘1H’)) 2015-03-29 03:30:00+02:00 0 2015-03-29 03:30:00+02:00 1 dtype: int64
-
union
(second_geometry)¶ Constructs the geometry that is the set-theoretic union of the input geometries.
- Paramters:
- second_geometry
a second geometry
-
unstack
(level=- 1, fill_value=None)¶ Pivot a level of the (necessarily hierarchical) index labels.
Returns a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels.
If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex).
The level involved will automatically get sorted.
- levelint, str, or list of these, default -1 (last level)
Level(s) of index to unstack, can pass level name.
- fill_valueint, str or dict
Replace NaN with this value if the unstack produces missing values.
Series or DataFrame
DataFrame.pivot : Pivot a table based on column values. DataFrame.stack : Pivot a level of the column labels (inverse operation
from unstack).
>>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64
>>> s.unstack(level=-1) a b one 1.0 2.0 two 3.0 4.0
>>> s.unstack(level=0) one two a 1.0 3.0 b 2.0 4.0
>>> df = s.unstack(level=0) >>> df.unstack() one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64
-
update
(other, join='left', overwrite=True, filter_func=None, errors='ignore') → None¶ Modify in place using non-NA values from another DataFrame.
Aligns on indices. There is no return value.
- otherDataFrame, or object coercible into a DataFrame
Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame.
- join{‘left’}, default ‘left’
Only left join is implemented, keeping the index and columns of the original object.
- overwritebool, default True
How to handle non-NA values for overlapping keys:
True: overwrite original DataFrame’s values with values from other.
False: only update values that are NA in the original DataFrame.
- filter_funccallable(1d-array) -> bool 1d-array, optional
Can choose to replace values other than NA. Return True for values that should be updated.
- errors{‘raise’, ‘ignore’}, default ‘ignore’
If ‘raise’, will raise a ValueError if the DataFrame and other both contain non-NA data in the same place.
Changed in version 0.24.0: Changed from raise_conflict=False|True to errors=’ignore’|’raise’.
None : method directly changes calling object
- ValueError
When errors=’raise’ and there’s overlapping non-NA data.
When errors is not either ‘ignore’ or ‘raise’
- NotImplementedError
If join != ‘left’
dict.update : Similar method for dictionaries. DataFrame.merge : For column(s)-on-columns(s) operations.
>>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, 5, 6], ... 'C': [7, 8, 9]}) >>> df.update(new_df) >>> df A B 0 1 4 1 2 5 2 3 6
The DataFrame’s length does not increase as a result of the update, only values at matching index/column labels are updated.
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']}) >>> df.update(new_df) >>> df A B 0 a d 1 b e 2 c f
For Series, it’s name attribute must be set.
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2]) >>> df.update(new_column) >>> df A B 0 a d 1 b y 2 c e >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2]) >>> df.update(new_df) >>> df A B 0 a x 1 b d 2 c e
If other contains NaNs the corresponding values are not updated in the original dataframe.
>>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, np.nan, 6]}) >>> df.update(new_df) >>> df A B 0 1 4.0 1 2 500.0 2 3 6.0
-
property
values
¶ Return a Numpy representation of the DataFrame.
Warning
We recommend using
DataFrame.to_numpy()
instead.Only the values in the DataFrame will be returned, the axes labels will be removed.
- numpy.ndarray
The values of the DataFrame.
DataFrame.to_numpy : Recommended alternative to this method. DataFrame.index : Retrieve the index labels. DataFrame.columns : Retrieving the column names.
The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.
e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcast to int32. By
numpy.find_common_type()
convention, mixing int64 and uint64 will result in a float64 dtype.A DataFrame where all columns are the same type (e.g., int64) results in an array of the same type.
>>> df = pd.DataFrame({'age': [ 3, 29], ... 'height': [94, 170], ... 'weight': [31, 115]}) >>> df age height weight 0 3 94 31 1 29 170 115 >>> df.dtypes age int64 height int64 weight int64 dtype: object >>> df.values array([[ 3, 94, 31], [ 29, 170, 115]], dtype=int64)
A DataFrame with mixed type columns(e.g., str/object, int64, float32) results in an ndarray of the broadest type that accommodates these mixed types (e.g., object).
>>> df2 = pd.DataFrame([('parrot', 24.0, 'second'), ... ('lion', 80.5, 1), ... ('monkey', np.nan, None)], ... columns=('name', 'max_speed', 'rank')) >>> df2.dtypes name object max_speed float64 rank object dtype: object >>> df2.values array([['parrot', 24.0, 'second'], ['lion', 80.5, 1], ['monkey', nan, None]], dtype=object)
-
var
(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)¶ Return unbiased variance over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument
axis : {index (0), columns (1)} skipna : bool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- ddofint, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
- numeric_onlybool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
Series or DataFrame (if level specified)
-
where
(cond, other=nan, inplace=False, axis=None, level=None, errors='raise', try_cast=False)¶ Replace values where the condition is False.
- condbool Series/DataFrame, array-like, or callable
Where cond is True, keep the original value. Where False, replace with corresponding value from other. If cond is callable, it is computed on the Series/DataFrame and should return boolean Series/DataFrame or array. The callable must not change input Series/DataFrame (though pandas doesn’t check it).
- otherscalar, Series/DataFrame, or callable
Entries where cond is False are replaced with corresponding value from other. If other is callable, it is computed on the Series/DataFrame and should return scalar or Series/DataFrame. The callable must not change input Series/DataFrame (though pandas doesn’t check it).
- inplacebool, default False
Whether to perform the operation in place on the data.
- axisint, default None
Alignment axis if needed.
- levelint, default None
Alignment level if needed.
- errorsstr, {‘raise’, ‘ignore’}, default ‘raise’
Note that currently this parameter won’t affect the results and will always coerce to a suitable dtype.
‘raise’ : allow exceptions to be raised.
‘ignore’ : suppress exceptions. On error return original object.
- try_castbool, default False
Try to cast the result back to the input type (if possible).
Same type as caller
DataFrame.mask()
Return an object of same shape asself.
The where method is an application of the if-then idiom. For each element in the calling DataFrame, if
cond
isTrue
the element is used; otherwise the corresponding element from the DataFrameother
is used.The signature for
DataFrame.where()
differs fromnumpy.where()
. Roughlydf1.where(m, df2)
is equivalent tonp.where(m, df1, df2)
.For further details and examples see the
where
documentation in indexing.>>> s = pd.Series(range(5)) >>> s.where(s > 0) 0 NaN 1 1.0 2 2.0 3 3.0 4 4.0 dtype: float64
>>> s.mask(s > 0) 0 0.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64
>>> s.where(s > 1, 10) 0 10 1 10 2 2 3 3 4 4 dtype: int64
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) >>> df A B 0 0 1 1 2 3 2 4 5 3 6 7 4 8 9 >>> m = df % 3 == 0 >>> df.where(m, -df) A B 0 0 -1 1 -2 3 2 -4 -5 3 6 -7 4 -8 9 >>> df.where(m, -df) == np.where(m, df, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True >>> df.where(m, -df) == df.mask(~m, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True
-
within
(second_geometry, relation=None)¶ Indicates if the base geometry is within the comparison geometry. Paramters:
- second_geometry
a second geometry
- relation
The spatial relationship type.
BOUNDARY - Relationship has no restrictions for interiors or boundaries. CLEMENTINI - Interiors of geometries must intersect. Specifying
CLEMENTINI is equivalent to specifying None. This is the default.
PROPER - Boundaries of geometries must not intersect.
-
xs
(key, axis=0, level=None, drop_level: bool = True)¶ Return cross-section from the Series/DataFrame.
This method takes a key argument to select data at a particular level of a MultiIndex.
- keylabel or tuple of label
Label contained in the index, or partially in a MultiIndex.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
Axis to retrieve cross-section on.
- levelobject, defaults to first n levels (n=1 or len(key))
In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position.
- drop_levelbool, default True
If False, returns object with same levels as self.
- Series or DataFrame
Cross-section from the original Series or DataFrame corresponding to the selected index levels.
- DataFrame.locAccess a group of rows and columns
by label(s) or a boolean array.
- DataFrame.ilocPurely integer-location based indexing
for selection by position.
xs can not be used to set values.
MultiIndex Slicers is a generic way to get/set values on any level or levels. It is a superset of xs functionality, see MultiIndex Slicers.
>>> d = {'num_legs': [4, 4, 2, 2], ... 'num_wings': [0, 0, 2, 2], ... 'class': ['mammal', 'mammal', 'mammal', 'bird'], ... 'animal': ['cat', 'dog', 'bat', 'penguin'], ... 'locomotion': ['walks', 'walks', 'flies', 'walks']} >>> df = pd.DataFrame(data=d) >>> df = df.set_index(['class', 'animal', 'locomotion']) >>> df num_legs num_wings class animal locomotion mammal cat walks 4 0 dog walks 4 0 bat flies 2 2 bird penguin walks 2 2
Get values at specified index
>>> df.xs('mammal') num_legs num_wings animal locomotion cat walks 4 0 dog walks 4 0 bat flies 2 2
Get values at several indexes
>>> df.xs(('mammal', 'dog')) num_legs num_wings locomotion walks 4 0
Get values at specified index and level
>>> df.xs('cat', level=1) num_legs num_wings class locomotion mammal walks 4 0
Get values at several indexes and levels
>>> df.xs(('bird', 'walks'), ... level=[0, 'locomotion']) num_legs num_wings animal penguin 2 2
Get values at specified column and axis
>>> df.xs('num_wings', axis=1) class animal locomotion mammal cat walks 0 dog walks 0 bat flies 2 bird penguin walks 2 Name: num_wings, dtype: int64